首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The survival motor neuron (SMN) protein is the product of the spinal muscular atrophy disease gene. SMN and Gemin2-7 proteins form a large macromolecular complex that localizes in the cytoplasm as well as in the nucleoplasm and in nuclear Gems. The SMN complex interacts with several additional proteins and likely functions in multiple cellular pathways. In the cytoplasm, a subset of SMN complexes containing unrip and Sm proteins mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Here, by mass spectrometry analysis of SMN complexes purified from HeLa cells, we identified a novel protein that is evolutionarily conserved in metazoans, and we named it Gemin8. Co-immunoprecipitation and immunolocalization experiments demonstrated that Gemin8 is associated with the SMN complex and is localized in the cytoplasm and in the nucleus, where it is highly concentrated in Gems. Gemin8 interacts directly with the Gemin6-Gemin7 heterodimer and, together with unrip, these proteins form a heteromeric subunit of the SMN complex. Gemin8 is also associated with Sm proteins, and Gemin8-containing SMN complexes are competent to carry out snRNP assembly. Importantly, RNA interference experiments indicate that Gemin8 knock-down impairs snRNP assembly, and Gemin8 expression is down-regulated in cells with low levels of SMN. These results demonstrate that Gemin8 is a novel integral component of the SMN complex and extend the repertoire of cellular proteins involved in the pathway of snRNP biogenesis.  相似文献   

2.
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.  相似文献   

3.
The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core assembly takes place in the cytoplasm from Sm proteins and newly exported snRNAs. Here, we identify three distinct cytoplasmic SMN complexes, each representing a defined intermediate in the snRNP biogenesis pathway. We show that the SMN complex associates with newly exported snRNAs containing the nonphosphorylated form of the snRNA export factor PHAX. The second SMN complex identified contains assembled Sm cores and m(3)G-capped snRNAs. Finally, the SMN complex is associated with a preimport complex containing m(3)G-capped snRNP cores bound to the snRNP nuclear import mediator snurportin1. Thus, the SMN complex is associated with snRNPs during the entire process of their biogenesis in the cytoplasm and may have multiple functions throughout this process.  相似文献   

4.
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival motor neuron (SMN) protein. SMN together with Gemins2-8 and unrip proteins form a macromolecular complex that functions in the assembly of small nuclear ribonucleoproteins (snRNPs) of both the major and the minor splicing pathways. It is not known whether the levels of spliceosomal snRNPs are decreased in SMA. Here we analyzed the consequence of SMN deficiency on snRNP metabolism in the spinal cord of mouse models of SMA with differing phenotypic severities. We demonstrate that the expression of a subset of Gemin proteins and snRNP assembly activity are dramatically reduced in the spinal cord of severe SMA mice. Comparative analysis of different tissues highlights a similar decrease in SMN levels and a strong impairment of snRNP assembly in tissues of severe SMA mice, although the defect appears smaller in kidney than in neural tissue. We further show that the extent of reduction in both Gemin proteins expression and snRNP assembly activity in the spinal cord of SMA mice correlates with disease severity. Remarkably, defective SMN complex function in snRNP assembly causes a significant decrease in the levels of a subset of snRNPs and preferentially affects the accumulation of U11 snRNP--a component of the minor spliceosome--in tissues of severe SMA mice. Thus, impairment of a ubiquitous function of SMN changes the snRNP profile of SMA tissues by unevenly altering the normal proportion of endogenous snRNPs. These findings are consistent with the hypothesis that SMN deficiency affects the splicing machinery and in particular the minor splicing pathway of a rare class of introns in SMA.  相似文献   

5.
The survival of motor neurons (SMN) protein, the product of the gene responsible for the motor neuron degenerative disease spinal muscular atrophy (SMA), is part of a large macromolecular complex. The SMN complex is localized in both the cytoplasm and the nucleus and contains SMN, Gemin2, Gemin3, Gemin4, Gemin5, and a few not yet identified proteins. The SMN complex plays a key role in the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and other ribonucleoprotein particles. As a step toward the complete characterization of the components of the SMN complex, we generated stable cell lines that express FLAG-tagged SMN or Gemin2 under the control of a tetracycline-inducible promoter. Native SMN complexes of identical protein composition to those isolated by immunoprecipitation with anti-SMN antibodies were purified by affinity chromatography from extracts of both cell lines. Here we report the identification by mass spectrometry of a novel protein component of the SMN complex termed Gemin6. Co-immunoprecipitation, immunolocalization, and in vitro binding experiments demonstrate that Gemin6 is a component of the SMN complex that localizes to gems and interacts with several Sm proteins of the spliceosomal snRNPs.  相似文献   

6.
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.  相似文献   

7.
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.  相似文献   

8.
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.  相似文献   

9.
The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process.  相似文献   

10.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   

11.
The survival of motor neurons (SMN) protein is the product of the gene mutated or deleted in the neurodegenerative disease, spinal muscular atrophy. SMN is part of a large macromolecular complex that also contains Gemin2, Gemin3, Gemin4, Gemin5, and Gemin6. The SMN complex functions in the assembly of spliceosomal small nuclear ribonucleoproteins and probably other ribonucleoprotein particles. We have identified a novel protein component of the SMN complex termed Gemin7 using native purified SMN complexes and peptide sequencing by mass spectrometry. Coimmunoprecipitation and immunolocalization experiments demonstrate that Gemin7 is a component of the SMN complex and colocalizes with SMN in the cytoplasm and in gems. Binding experiments show that Gemin7 interacts directly with SMN and Gemin6 and mediates the association of Gemin6 with the SMN complex. The amino acid sequence of Gemin7 does not contain any recognizable motifs with the exception of several arginine and glycine repeats that are necessary for its interaction with SMN. Moreover, Gemin7 interacts with several Sm proteins of spliceosomal small nuclear ribonucleoproteins, in particular, with SmE. With the identification of Gemin7, the inventory of the core components of the SMN complex appears essentially complete.  相似文献   

12.
The survival of motor neurons protein (SMN) is part of a large complex that contains six other proteins, Gemins2-7. The SMN complex assembles the heptameric Sm protein core on small nuclear RNAs (snRNAs) and plays a critical role in the biogenesis of snRNPs, the major and essential components of mRNA splicing in eukaryotes. For its function, the SMN complex binds Sm proteins and snRNAs, which it distinguishes from other RNAs by specific features they contain. We show here that Gemin5, a 170 kDa WD-repeat protein, is the snRNA binding protein of the SMN complex. Gemin5 binds directly and specifically to the unique features, including the Sm site, of snRNAs. Reduction of Gemin5 results in reduced capacity of the SMN complex to bind snRNAs and to assemble Sm cores. Gemin5 therefore functions as the factor that allows the SMN complex to distinguish snRNAs from other cellular RNAs for snRNP biogenesis.  相似文献   

13.
The U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) form essential components of spliceosomes, the machinery that removes introns from pre-mRNAs in eukaryotic cells. A critical initial step in the complex process of snRNP biogenesis is the assembly of a group of common core proteins (Sm proteins) on spliceosomal snRNA. In this study we show by multiple independent methods that the protein pICln associates with Sm proteins in vivo and in vitro. The binding of pICln to Sm proteins interferes with Sm protein assembly on spliceosomal snRNAs and inhibits import of snRNAs into the nucleus. Furthermore, pICln prevents the interaction of Sm proteins with the survival of motor neurons (SMN) protein, an interaction that has been shown to be critical for snRNP biogenesis. These findings lead us to propose a model in which pICln participates in the regulation of snRNP biogenesis, at least in part by interfering with Sm protein interaction with SMN protein.  相似文献   

14.
Zhang R  So BR  Li P  Yong J  Glisovic T  Wan L  Dreyfuss G 《Cell》2011,146(3):384-395
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5?? crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.  相似文献   

15.
The survival of motor neurons (SMN) protein, product of the disease gene of the common neurodegenerative disease spinal muscular atrophy, is part of the large multiprotein "SMN complex." The SMN complex functions as an assembly machine for small nuclear ribonucleoproteins (snRNPs)-the major components of the spliceosome. Here, we report the crystal structure of two components of the human SMN complex, Gemin6 and Gemin7. Although Gemin6 and Gemin7 have no significant sequence similarity with Sm proteins, both adopt canonical Sm folds. Moreover, Gemin6 and Gemin7 exist as a heterodimer, and interact with each other via an interface similar to that which mediates interactions among the Sm proteins. Together with binding experiments that show that the Gemin6/Gemin7 complex binds to Sm proteins, these findings provide a framework for considering how the SMN complex, with Gemin6 and Gemin7 as tools, might organize Sm proteins for formation of Sm rings on snRNA targets.  相似文献   

16.
Assembly of the Sm-class of U-rich small nuclear ribonucleoprotein particles (U snRNPs) is a process facilitated by the macromolecular survival of motor neuron (SMN) complex. This entity promotes the binding of a set of factors, termed LSm/Sm proteins, onto snRNA to form the core structure of these particles. Nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and unrip have been identified as the major components of the SMN complex. So far, however, only little is known about the architecture of this complex and the contribution of individual components to its function. Here, we present a comprehensive interaction map of all core components of the SMN complex based upon in vivo and in vitro methods. Our studies reveal a modular composition of the SMN complex with the three proteins SMN, Gemin8, and Gemin7 in its center. Onto this central building block the other components are bound via multiple interactions. Furthermore, by employing a novel assay, we were able to reconstitute the SMN complex from individual components and confirm the interaction map. Interestingly, SMN protein carrying an SMA-causing mutation was severely impaired in formation of the SMN complex. Finally, we show that the peripheral component Gemin5 contributes an essential activity to the SMN complex, most likely the transfer of Sm proteins onto the U snRNA. Collectively, the data presented here provide a basis for the detailed mechanistic and structural analysis of the assembly machinery of U snRNPs.  相似文献   

17.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.  相似文献   

18.
19.
The SMN-Gemins complex is composed of Gemins 2–8, Unrip and the survival motor neuron (SMN) protein. Limiting levels of SMN result in the neuromuscular disorder, spinal muscular atrophy (SMA), which is presently untreatable. The most-documented function of the SMN-Gemins complex concerns the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Despite multiple genetic studies, the Gemin proteins have not been identified as prominent modifiers of SMN-associated mutant phenotypes. In the present report, we make use of the Drosophila model organism to investigate whether viability and motor phenotypes associated with a hypomorphic Gemin3 mutant are enhanced by changes in the levels of SMN, Gemin2 and Gemin5 brought about by various genetic manipulations. We show a modifier effect by all three members of the minimalistic fly SMN-Gemins complex within the muscle compartment of the motor unit. Interestingly, muscle-specific overexpression of Gemin2 was by itself sufficient to depress normal motor function and its enhanced upregulation in all tissues leads to a decline in fly viability. The toxicity associated with increased Gemin2 levels is conserved in the yeast S. pombe in which we find that the cytoplasmic retention of Sm proteins, likely reflecting a block in the snRNP assembly pathway, is a contributing factor. We propose that a disruption in the normal stoichiometry of the SMN-Gemins complex depresses its function with consequences that are detrimental to the motor system.  相似文献   

20.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号