首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoskeletal rearrangements are central to endothelial cell physiology and are controlled by soluble factors, matrix proteins, cell-cell interactions, and mechanical forces. We previously reported that aortic endothelial cells can rearrange their cytoskeletons into complex actin-based structures called podosomes when a constitutively active mutant of Cdc42 is expressed. We now report that transforming growth factor beta (TGF-beta) promotes podosome formation in primary aortic endothelial cells. TGF-beta-induced podosomes assembled together into large ring- or crescent-shaped structures. Their formation was dependent on protein synthesis and required functional Src, phosphatidylinositide 3-kinase, Cdc42, RhoA, and Smad signaling. MT1-MMP and metalloprotease 9 (MMP9), both upregulated by TGF-beta, were detected at sites of podosome formation, and MT1-MMP was found to be involved in the local degradation of extracellular matrix proteins beneath the podosomes and required for the invasion of collagen gels by endothelial cells. We propose that TGF-beta plays an important role in endothelial cell physiology by inducing the formation of podosomal structures endowed with metalloprotease activity that may contribute to arterial remodeling.  相似文献   

2.
Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with beta-actin-ECFP and L-fimbrin-EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into daughter podosomes. The large podosome cluster precursor also appears to be an adhesion structure; it contains actin, fimbrin, integrin, and is in close apposition to the substratum. Microtubule inhibitors paclitaxel and demecolcine inhibit the turnover and polarized formation of podosomes, but not the turnover rate of actin in these structures. Because daughter podosomes and podosome cluster precursors are preferentially located at the leading edge, they may play a critical role in continually generating new sites of cell adhesion.  相似文献   

3.
Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.  相似文献   

4.
Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins. Lasp-1 is a ubiquitously expressed, actin-binding protein that is known to regulate cytoskeleton architecture and cell migration. This multidomain protein is predominantely present at focal adhesions, however, a second pool of Lasp-1 molecules is also found at lamellipodia and vesicle-like microdomains in the cytosol.In this report, we show that Lasp-1 is a novel component and regulator of podosomes. Immunofluorescence studies reveal a localization of Lasp-1 in the podosome ring structure, where it colocalizes with zyxin and vinculin. Life cell imaging experiments demonstrate that Lasp-1 is recruited in early steps of podosome assembly. A siRNA-mediated Lasp-1 knockdown in human macrophages affects podosome dynamics as well as their matrix degradation capacity. In summary, our data indicate that Lasp-1 is a novel component of podosomes and is involved in the regulation of podosomal function.  相似文献   

5.
Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings.  相似文献   

6.
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing “plus” ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.  相似文献   

7.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

8.
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work sets the scene for future studies of molecular and cellular processes regulating macrophage trans-migration.  相似文献   

9.
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13‐dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP‐9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation‐induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu‐induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)‐inhibited PDBu‐induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP‐9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu‐induced podosomes by influencing the recruitment of PKCζ and MMP‐9 to podosomes. J. Cell. Physiol. 228: 416–427, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Podosomes are adhesion structures characteristic of the myeloid cell lineage, encompassing osteoclasts, dendritic cells and macrophages. Podosomes are actin-based structures that are dynamic and capable of self-organization. In particular in the osteoclast, podosomes densely pack into a thick ring called the sealing zone. This adhesion structure is typical of osteoclasts and necessary for the resorption of the bone matrix. We thought to explore in more details the role of podosomes during osteoclast differentiation and migration. To this end, we made from soft to stiff substrates that had not been functionalized with extracellular matrix proteins. Such substrates did not support podosome formation in osteoclasts. With such devices, we could show that integrin activation was sufficient to drive podosome assembly, in a substrate stiffness independent fashion. We additionally report here that osteoclast differentiation is a podosome-independent process. Finally, we show that osteoclasts devoid of podosomes can migrate efficiently. Our study further illustrates the great capacity of myeloid cells to adapt to the different environments they encounter during their life cycle.  相似文献   

11.
Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages.  相似文献   

12.
Podosomes, small actin-based adhesion structures, differ from focal adhesions in two aspects: their core structure and their ability to organize into large patterns in osteoclasts. To address the mechanisms underlying these features, we imaged live preosteoclasts expressing green fluorescent protein-actin during their differentiation. We observe that podosomes always form inside or close to podosome groups, which are surrounded by an actin cloud. Fluorescence recovery after photobleaching shows that actin turns over in individual podosomes in contrast to cortactin, suggesting a continuous actin polymerization in the podosome core. The observation of podosome assemblies during osteoclast differentiation reveals that they evolve from simple clusters into rings that expand by the continuous formation of new podosomes at their outer ridge and inhibition of podosome formation inside the rings. This self-organization of podosomes into dynamic rings is the mechanism that drives podosomes at the periphery of the cell in large circular patterns. We also show that an additional step of differentiation, requiring microtubule integrity, stabilizes the podosome circles at the cell periphery to form the characteristic podosome belt pattern of mature osteoclasts. These results therefore provide a mechanism for the patterning of podosomes in osteoclasts and reveal a turnover of actin inside the podosome.  相似文献   

13.
Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.  相似文献   

14.

Background

Dystroglycan is a ubiquitously expressed cell adhesion receptor best understood in its role as part of the dystrophin glycoprotein complex of mature skeletal muscle. Less is known of the role of dystroglycan in more fundamental aspects of cell adhesion in other cell types, nor of its role in myoblast cell adhesion.

Principal Findings

We have examined the role of dystroglycan in the early stages of myoblast adhesion and spreading and found that dystroglycan initially associates with other adhesion proteins in large puncta morphologically similar to podosomes. Using a human SH3 domain phage display library we identified Tks5, a key regulator of podosomes, as interacting with β-dystroglycan. We verified the interaction by immunoprecipitation, GST-pulldown and immunfluorescence localisation. Both proteins localise to puncta during early phases of spreading, but importantly following stimulation with phorbol ester, also localise to structures indistinguishable from podosomes. Dystroglycan overexpression inhibited podosome formation by sequestering Tks5 and Src. Mutation of dystroglycan tyrosine 890, previously identified as a Src substrate, restored podosome formation.

Conclusions

We propose therefore, that Src-dependent phosphorylation of β-dystroglycan results in the formation of a Src/dystroglycan complex that drives the SH3-mediated association between dystroglycan and Tks5 which together regulate podosome formation in myoblasts.  相似文献   

15.
Wiskott-Aldrich Syndrome Protein (WASP) is a hematopoietic cell-specific regulator of Arp2/3-dependent actin polymerization. Despite the presence of the highly homologous N-WASP (neural-WASP), macrophages from WAS patients are devoid of podosomes, adhesion structures in cells of the monocytic lineage capable of matrix degradation via matrix metalloproteases (MMPs), suggesting that WASP and N-WASP play unique roles in macrophages. To determine whether N-WASP also plays a unique role in macrophage function, N-WASP expression was reduced using silencing RNA in a sub-line of RAW 264.7 macrophages (RAW/LR5). Similar to reduction in WASP levels, cells with reduced N-WASP levels were rounder and less polarized. Interestingly, podosomes still formed when N-WASP was reduced but they were unable to perform matrix degradation. This defect was rescued by re-expression of N-WASP, but not by over-expression of WASP, indicating that these proteins play distinct roles in podosome function. Additionally, reducing N-WASP levels mistargets the metalloprotease MT1-MMP and it no longer localizes to podosomes. However, N-WASP was only found to co-localize with MT1-MMP positive vesicles at podosomes, suggesting that N-WASP may play a role on the targeting or fusion of MMP-containing vesicles to podosomes in macrophage-like cells.  相似文献   

16.
Podosomes are actin-rich adhesion structures typical for monocytic cells and are implicated in migration and invasion. Major modes of podosome regulation include RhoGTPase signaling and actin regulatory pathways. However, it is not clearly understood how these signals induce highly localized changes in podosome formation and dynamics. Here, we show that the RhoGTPase effector PAK4, a member of the p21 associated kinase family, and its regulator alphaPIX (PAK-interacting exchange factor), are central to podosome formation in primary human macrophages. Immunofluorescence, biochemical and microarray data indicate that PAK4 acts as physiological regulator of podosomes in this system. Accordingly, transfection of a specific shRNA, as well as expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size of individual podosomes, respectively, indicating a modulatory influence of PAK4 kinase activity on podosome size. Similar to the results gained with PAK4, cellular/overexpressed PIX was shown to be closely associated with podosomes. Moreover, both overexpression of alphaPIX wt and a mutant lacking the SH3 domain led to coalescence of podosomes. In sum, we propose that PAK4 and alphaPIX can induce highly localized changes in actin dynamics and thereby regulate size and number of podosomes in primary human macrophages.  相似文献   

17.
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.  相似文献   

18.
Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.  相似文献   

19.
Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from WASP-deficient Wiskott-Aldrich syndrome patients lack podosomes, resulting in defective chemotactic migration. However, the molecular basis for podosome formation is not fully understood. I have shown that the WASP interacting protein (WIP), a binding partner of WASP, plays an important role in podosome formation in macrophages. I showed that WASP bound WIP to form a complex at podosomes and that the knockdown of WIP impairs podosome formation. When WASP binding to WIP was blocked, podosome formation was also impaired. When WASP expression was reduced by small interfering RNA transfection, the amount of the complex of WASP with WIP decreased, resulting in reduced podosome formation. Podosomes were restored by reconstitution of the WASP-WIP complex in WASP knockdown cells. These results indicate that the WASP-WIP complex is required for podosome formation in macrophages. When podosome formation was reduced by blocking WASP binding to WIP, transendothelial migration of macrophages, the most crucial process in macrophage trafficking, was impaired. These results suggest that a complex of WASP with WIP plays a critical role in podosome formation, thereby mediating efficient transendothelial migration of macrophages.  相似文献   

20.
Helicobacter pylori (H. pylori) infection may contribute to many extragastric diseases including liver cirrhosis and hepatocellular carcinoma. However, the exact mechanism by which H. pylori induces the liver damage is largely unknown. We used cultured mouse primary hepatocytes as an in vitro model to investigate different aspects of liver physiology and pathology. In this study, we show that primary hepatocytes are able to assemble actin-based cytoskeletal structures called podosomes at the ventral plasma membrane. These structures are positive for podosome markers such as cortactin, vinculin and integrins and comprise proteolytic potential. Infection with the pathogen H. pylori further stimulates the formation of podosomes in primary hepatocytes. The use of pharmacological inhibitors reveals that this response is mediated, at least in part, by TGFβ, a cytokine known to regulate podosome formation in endothelial cells. Similar results are obtained with the hepatoma cell line Huh7. Podosome formation is associated with increased hepatocyte degrading capacities but also with reduced cell motility. Therefore, podosome assembly translates into hepatocyte malfunction. Our study supports the hypothesis that hepatocytes can also assemble podosomes under pathological conditions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号