首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Landoulsi  A Malki  R Kern  M Kohiyama  P Hughes 《Cell》1990,63(5):1053-1060
A particular outer membrane fraction previously defined as possessing specific affinity for the hemimethylated form of the origin of replication of the E. coli chromosome (oriC) is shown to inhibit the initiation of DNA synthesis at this site on hemimethylated DNA templates in vitro. The replication of fully methylated or unmethylated DNA templates is not affected. Also, no inhibition is observed if initiation takes place at random sites on the hemimethylated template. The key inactivation step appears to be membrane inhibition of DnaA initiator protein binding to oriC. Remethylation of the membrane-bound hemimethylated DNA results in reactivation. Our results demonstrate direct involvement of the membrane in the control of DNA replication. We propose that association/dissociation of the origin from the cell membrane is one of the control elements governing interinitiation times in E. coli.  相似文献   

2.
Summary P1 DNA is synthesized in the E. coli ts dna mutants 165/70 (elongation defect) and 252 (initiation defect) at elevated temperatures. In strain 165/70, P1 infection at 41°C leads to phage production accompanied by a transient recovery of bacterial DNA synthesis. No phages are produced byt P1 DNA is still synthesized in strain 252 if infected after host DNA replication has come to a halt at 42°C.  相似文献   

3.
S Wold  E Crooke    K Skarstad 《Nucleic acids research》1996,24(18):3527-3532
Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation.  相似文献   

4.
A theory is presented to describe the behavior of micro-organisms, bacteria and protozoa. Individual cells are regarded as particles having internal state variables. The change of each variable with time depends on the environmental condition. The velocity and the frequency of direction change of swimming cells are determined by the values of these variables. With this framework, the theory gives a method to connect the behaviour in a spatial gradient of the environment and the behaviour upon a change of the environment with time. Observed behaviors of bacteria and protozoa are understandable on the basis of simple rate equations for internal state variables and the product expressions for the velocity and the frequency of direction change as functions of these variables. Experimental data on the thermotaxis of paramecium are shown for comparison with the theoretical results.  相似文献   

5.
Autoregulation of the DNA replication gene dnaA in E. coli K-12   总被引:36,自引:0,他引:36  
R E Braun  K O'Day  A Wright 《Cell》1985,40(1):159-169
  相似文献   

6.
Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the assumption that suppressors of the cold-sensitive phenotype of the cos mutant should include mutations that affect the efficiency and/or regulation of DNA replication, we subjected a dnaA(cos) mutant strain to transposon mutagenesis and selected mutant derivatives that could form colonies at 30 degrees C. Four suppressors of the dnaA(cos)-mediated cold sensitivity were identified and further characterized. Based on origin to terminus ratios, chromosome content per cell, measured by flow cytometry, and sensitivity to the replication fork inhibitor hydroxyurea, the suppressors fell into two distinct categories: those that directly inhibit over-initiation of DNA replication and those that act independently of initiation. Mutations that decrease the cellular level of HolC, the chi subunit of DNA polymerase, or loss of ndk (nucleoside diphosphate kinase) function fall into the latter category. We propose that these novel suppressor mutations function by decreasing the efficiency of replication fork movement in vivo, either by decreasing the dynamic exchange of DNA polymerase subunits in the case of HolC, or by altering the balance between DNA replication and deoxynucleoside triphosphate synthesis in the case of ndk. Additionally, our results indicate a direct correlation between over-initiation and sensitivity to replication fork inhibition by hydroxyurea, supporting a model of increased head-to-tail replication fork collisions due to over-initiation.  相似文献   

7.
Summary The restriction nuclease cleavage pattern of E. coli DNA synthesized in vitro in the cellophane membrane system (Schaller et al., 1972) is similar to the one obtained after labelling E. coli in vivo. This is shown for exponentially growing cells and for cells synchronized by amino acid starvation followed by thymine starvation. In synchronized cells a piece of some 180 kilobase pairs is labelled containing oriC and neighbouring regions at 82 min on the genetic map of E. coli. A pulse label in vitro is incorporated into the same piece of DNA, but the center of this region, i.e. the EcoR1 fragment of 8.6 kbp length which contains the oriC region (Marsh and Worcel, 1977; v. Meyenburg et al., 1977; Yasuda and Hirota, 1977) is missing.  相似文献   

8.
9.
Mulcair MD  Schaeffer PM  Oakley AJ  Cross HF  Neylon C  Hill TM  Dixon NE 《Cell》2006,125(7):1309-1319
During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression. In contrast, strand separation extending to and including the strictly conserved G-C(6) base pair at the nonpermissive end led to formation of a stable locked complex. Lock formation specifically requires the cytosine residue, C(6). The crystal structure of the locked complex showed that C(6) moves 14 A from its normal position to bind in a cytosine-specific pocket on the surface of Tus.  相似文献   

10.
Cells respond to DNA damage during S phase by slowing chromosome replication. Recent results have shed light on the mechanism by which this 'intra-S phase' checkpoint is implemented.  相似文献   

11.
Initiation of DNA replication in Escherichia coli.   总被引:4,自引:1,他引:3  
  相似文献   

12.
The role of dam methyltransferase in the control of DNA replication in E. coli   总被引:24,自引:0,他引:24  
E Boye  A L?bner-Olesen 《Cell》1990,62(5):981-989
The timing and control of initiation of DNA replication in E. coli was studied under conditions where the cellular level of dam methyltransferase was controlled by a temperature-inducible promoter. Flow cytometry was used to demonstrate that the synchrony of initiation at the several origins within each cell was critically dependent on the level of dam methyltransferase. Initiations were shown to be synchronous only in a narrow temperature range. The data are explained by a model where a newly replicated and therefore hemimethylated oriC is inert for reinitiation. Such a model may be applicable to eukaryotic cells, where classes of origins are initiated in synchrony and only once per cell cycle.  相似文献   

13.
T R Magee  T Asai  D Malka    T Kogoma 《The EMBO journal》1992,11(11):4219-4225
  相似文献   

14.
《Epigenetics》2013,8(3):165-175
Hypomethylation of DNA repeats, including satellite 2 DNA (Sat2), is one of the most frequent epigenetic changes in cancer. We examined ovarian epithelial tumors and diverse control tissues for methylation on only one strand (hemimethylation), both strands (symmetrical methylation), or neither strand at Sat2 CpG dyads using hairpin genomic sequencing. Analysis of the resulting cloned DNA molecules indicated that although carcinomas displayed much symmetrical hypomethylation of CpG dyads, there was cancer-linked hypermethylation at one of the thirteen dyads in the examined 0.2-kb Sat2 region. Hemimethylated sites were seen in both carcinomas and controls but, importantly, in carcinoma DNA molecules, they were significantly more likely to occur in clusters displaying the same orientation (the same strand methylated). Our data suggest that hemimethylated CpG dyads are intermediates in active demethylation during carcinogenesis and not just due to a failure of maintenance methylation during replicative DNA synthesis. Constitutive heterochromatin may be especially suitable for providing a snapshot of demethylation intermediates because hemimethylation might be more long-lived in heterochromatin due to its highly condensed state.  相似文献   

15.
Inhibiting the progress of replication forks in E. coli makes them susceptible to breakage. Broken replication forks are evidently reassembled by the RecBCD recombinational repair pathway. These findings explain a particular pattern of DNA degradation during inhibition of chromosomal replication, the role of recombination in the viability of mutants with displaced replication origin, and hyper-recombination observed in the Terminus of the E. coli chromosome in rnh mutants. Breakage and repair of inhibited replication forks could be the reason for the recombination-dependence of inducible stable DNA replication. A mechanism by which RecABCD-dependent recombination between very short inverted repeats may help E. coli to invert an operon, transcribed in the direction opposite to that of DNA replication, is discussed.  相似文献   

16.
Summary The DNA binding protein B' preparation, isolated from the membrane of E. coli, recognizes two sites, one of which is locatd in the minimum oriC (35–270 bp) and the other between base pairs 417 and 488. Recognition is only possible when restriction fragments containing these sites are in single-stranded state. At the first site the strand reading 3OH-5P in the direction of the E. coli genetic map is recognized, at the second site the 5P-3OH strand.  相似文献   

17.
18.
19.
E Van Dyck  F Foury  B Stillman    S J Brill 《The EMBO journal》1992,11(9):3421-3430
It has previously been shown that the mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae becomes thermosensitive due to the inactivation of the mitochondrial DNA helicase gene, PIF1. A suppressor of this thermosensitive phenotype was isolated from a wild-type plasmid library by transforming a pif1 null strain to growth on glycerol at the non-permissive temperature. This suppressor is a nuclear gene encoding a 135 amino acid protein that is itself essential for mtDNA replication; cells lacking this gene are totally devoid of mtDNA. We therefore named this gene RIM1 for replication in mitochondria. The primary structure of the RIM1 protein is homologous to the single-stranded DNA binding protein (SSB) from Escherichia coli and to the mitochondrial SSB from Xenopus laevis. The mature RIM1 gene product has been purified from yeast extracts using a DNA unwinding assay dependent upon the DNA helicase activity of SV40 T-antigen. Direct amino acid sequencing of the protein reveals that RIM1 is a previously uncharacterized SSB. Antibodies against this purified protein localize RIM1 to mitochondria. The SSB encoded by RIM1 is therefore an essential component of the yeast mtDNA replication apparatus.  相似文献   

20.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号