共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ and cross-bridge-induced changes in troponin C in skinned skeletal muscle fibers: effects of force inhibition 下载免费PDF全文
Changes in skeletal troponin C (sTnC) structure during thin filament activation by Ca2+ and strongly bound cross-bridge states were monitored by measuring the linear dichroism of the 5' isomer of iodoacetamidotetramethylrhodamine (5'IATR), attached to Cys98 (sTnC-5'ATR), in sTnC-5'ATR reconstituted single skinned fibers from rabbit psoas muscle. To isolate the effects of Ca2+ and cross-bridge binding on sTnC structure, maximum Ca2+-activated force was inhibited with 0.5 mM AlF4- or with 30 mM 2,3 butanedione-monoxime (BDM) during measurements of the Ca2+ dependence of force and dichroism. Dichroism was 0.08 +/- 0.01 (+/- SEM, n = 9) in relaxing solution (pCa 9.2) and decreased to 0.004 +/- 0.002 (+/- SEM, n = 9) at pCa 4.0. Force and dichroism had similar Ca2+ sensitivities. Force inhibition with BDM caused no change in the amplitude and Ca2+ sensitivity of dichroism. Similarly, inhibition of force at pCa 4.0 with 0.5 mM AlF4- decreased force to 0.04 +/- 0.01 of maximum (+/- SEM, n = 3), and dichroism was 0.04 +/- 0.03 (+/- SEM, n = 3) of the value at pCa 9.2 and unchanged relative to the corresponding normalized value at pCa 4.0 (0.11 +/- 0.05, +/- SEM; n = 3). Inhibition of force with AlF4- also had no effect when sTnC structure was monitored by labeling with either 5-dimethylamino-1-napthalenylsulfonylaziridine (DANZ) or 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD). Increasing sarcomere length from 2.5 to 3.6 microm caused force (pCa 4.0) to decrease, but had no effect on dichroism. In contrast, rigor cross-bridge attachment caused dichroism at pCa 9.2 to decrease to 0.56 +/- 0.03 (+/- SEM, n = 5) of the value at pCa 9. 2, and force was 0.51 +/- 0.04 (+/- SEM, n = 6) of pCa 4.0 control. At pCa 4.0 in rigor, dichroism decreased further to 0.19 +/- 0.03 (+/- SEM, n = 6), slightly above the pCa 4.0 control level; force was 0.66 +/- 0.04 of pCa 4.0 control. These results indicate that cross-bridge binding in the rigor state alters sTnC structure, whereas cycling cross-bridges have little influence at either submaximum or maximum activating [Ca2+]. 相似文献
2.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development. 相似文献
3.
The aim of this study is to investigate the molecular events associated with the deleterious effects of acidosis on the contractile properties of cardiac muscle as in the ischemia of heart failure. We have conducted a study of the effects of increasing acidity on the Ca(2+) induced conformational changes of pyrene labelled cardiac troponin C (PIA-cTnC) in isolation and in complex with porcine cardiac or chicken pectoral skeletal muscle TnI and/or TnT. The pyrene label has been shown to serve as a useful fluorescence reporter group for conformational and interaction events of the N-terminal regulatory domain of TnC with only minimal fluorescence changes associated with C-terminal domain. Results obtained show that the significant decreases at pH 6.0 of site II Ca(2+) affinity of PIA-cTnC when complexed as a binary complex with either cTnI or cTnT are significantly reduced when cTnI is replaced with sTnI or cTnT with sTnT. However, this effect is appreciably diminished when the cTnI and cTnT in the ternary complex are replaced by sTnI and sTnT. The smaller effects in the ternary complex of replacing both cTnI and cTnT by their skeletal counterparts on depressing the Ca(2+) affinity from pH 7.0 to 6.0 arise from TnI replacement. Thus, changes in TnC conformation resulting from isoform-specific interactions with TnI and TnT could be an integral part of the effect of pH on myofilament Ca(2+)sensitivity. 相似文献
4.
K Kohama 《Journal of biochemistry》1979,86(3):811-820
1. New methods of preparing troponins from slow skeletal and cardiac muscle of the chicken have been developed. The electrophoretic mobilities of slow skeletal muscle troponin subunits were different from those of the corresponding fast skeletal muscle subunits. 2. A new method for determining the amount of divalent cations bound to troponin was developed. The principle of the method is to immobilize troponin by conjugating it with Sepharose 4B resin, thus making it readily sedimentable. 3. The numbers of Sr and Ca ions bound to slow muscle troponin at concentrations sufficient to produce maximum contraction were 1.73 and 1.36 mol per mol, respectively, being nearly equal to those of cardiac troponin but half of those of fast muscle troponin. 4. The concentrations of Sr and Ca ions giving half-maximal ion binding to slow muscle troponin (K50%) were 5.5 X 10(-6) M and 4.6 X 10(-7) M, respectively. 5. K50% for Sr of cardiac troponin was significantly higher than that of slow muscle troponin. Although K50% for Sr of cardiac troponin was the same as that of fast muscle troponin, cardiac troponin bound more Sr ions than fast muscle troponin at lower Sr ion concentrations. The mechanism underlying the high sensitivity of cardiac muscle contraction to Sr ions is discussed in comparison with that of slow muscle. 相似文献
5.
6.
The influences of [Ca(2+)] and Ca(2+) dissociation rate from troponin C (TnC) on the kinetics of contraction (k(Ca)) activated by photolysis of a caged Ca(2+) compound in skinned fast-twitch psoas and slow-twitch soleus fibers from rabbits were investigated at 15 degrees C. Increasing the amount of Ca(2+) released increased the amount of force in psoas and soleus fibers and increased k(Ca) in a curvilinear manner in psoas fibers approximately 5-fold but did not alter k(Ca) in soleus fibers. Reconstituting psoas fibers with mutants of TnC that in solution exhibited increased Ca(2+) affinity and approximately 2- to 5-fold decreased Ca(2+) dissociation rate (M82Q TnC) or decreased Ca(2+) affinity and approximately 2-fold increased Ca(2+) dissociation rate (NHdel TnC) did not affect maximal k(Ca). Thus the influence of [Ca(2+)] on k(Ca) is fiber type dependent and the maximum k(Ca) in psoas fibers is dominated by kinetics of cross-bridge cycling over kinetics of Ca(2+) exchange with TnC. 相似文献
7.
8.
The functional effects of two missense mutations in human cardiac troponin T, Phe110Ile and Glu244Asp, associated with familial hypertrophic cardiomyopathy were examined by exchanging the bacterially expressed and purified mutant troponin T into rabbit cardiac skinned muscle fibers. Both mutations significantly increased the maximum force without affecting the cooperativity. The Glu244Asp mutation also increased the Ca(2+) sensitivity of the force generation, as in the case of other mutations associated with a poor prognosis. On the other hand, the Phe110Ile mutation, associated with a favorable prognosis, had no effect on the Ca(2+) sensitivity. The results strongly support the hypothesis that increased Ca(2+) sensitivity is responsible for the pathogenesis of hypertrophic cardiomyopathy with a poor prognosis caused by mutations in troponin T. 相似文献
9.
R L Moss M R Lauer G G Giulian M L Greaser 《The Journal of biological chemistry》1986,261(13):6096-6099
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle. 相似文献
10.
M. A. Jensen H. Gesser 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1999,169(6):439-444
Inorganic phosphate, which increases in the hypoxic cardiac cell, depresses force development. The cardiac muscle of freshwater
turtle maintains a remarkably high contractility during hypoxia; this may involve a low sensitivity to phosphate. Therefore,
freshwater turtle and rainbow trout were compared with regard to Ca2+-activated force in skinned atrial trabeculae in a bath containing 3 mM ATP buffered by 15 mM creatine phosphate in the presence
of creatine kinase. For turtle, an increase in phosphate from 0 mM to either 6 mM or 12 mM reduced maximal force by 50% and
80% respectively, whereas the Ca2+ activity eliciting half maximal force (Ca0.5) was increased by 70% in 6 mM and could not be reliably recorded in 12 mM. For trout, the effects of phosphate were less
pronounced. An increase from 0 mM to 12 mM did not affect maximal force significantly, but elevated Ca0.5 by 70%. Hypoxia increases ADP as creatine phosphate is shifted to creatine, therefore, creatine phosphate was changed from
15 mM to 3 mM and creatine from 0 mM to 12 mM. After these changes, the elevation of phosphate from 0 mM to 12 mM had no significant
effects for either turtle or trout. In conclusion, the high performance of turtle cardiac muscle during hypoxia does not involve
a low sensitivity of the contractile system to phosphate. In addition, the effect of increased phosphate seems to be offset
by a concomitant increase in ADP.
Accepted: 28 June 1999 相似文献
11.
12.
13.
Function of the N-terminal calcium-binding sites in cardiac/slow troponin C assessed in fast skeletal muscle fibers 总被引:2,自引:0,他引:2
Fast skeletal troponin C (sTnC) has two low affinity Ca(2+)-binding sites (sites I and II), whereas in cardiac troponin C (cTnC) site I is inactive. By modifying the Ca2+ binding properties of sites I and II in cTnC it was demonstrated that binding of Ca2+ to an activated site I alone is not sufficient for triggering contraction in slow skeletal muscle fibers (Sweeney, H.L., Brito, R. M.M., Rosevear, P.R., and Putkey, J.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9538-9542). However, a similar study using sTnC showed that Ca2+ binding to site I alone could partially activate force production in fast skeletal muscle fibers (Sheng, Z., Strauss, W.L., Francois, J.M., and Potter, J.D. (1990) J. Biol. Chem. 265, 21554-21560). The purpose of the current study was to examine the functional characteristics of modified cTnC derivatives in fast skeletal muscle fibers to assess whether or not either low affinity site can mediate force production when coupled to fast skeletal isoforms of troponin (Tn) I and TnT. Normal cTnC and sTnC were compared with engineered derivatives of cTnC having either both sites I and II active, or only site I active. In contrast to what is seen in slow muscle, binding of Ca2+ to site I alone recovered about 15-20% of the normal calcium-activated force and ATPase activity in skinned fast skeletal muscle fibers and myofibrils, respectively. This is most likely due to structural differences between TnI and/or TnT isoforms that allow for partial recognition and translation of the signal represented by binding Ca2+ to site I of TnC when associated with fast skeletal but not slow skeletal muscle. 相似文献
14.
Fast skeletal muscle skinned fibers and myofibrils reconstituted with N-terminal fluorescent analogues of troponin C 总被引:1,自引:0,他引:1
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution. 相似文献
15.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule. 相似文献
16.
17.
A Babu S P Scordilis E H Sonnenblick J Gulati 《The Journal of biological chemistry》1987,262(12):5815-5822
The present study describes experiments on the myocardial trabeculae from the right ventricle of Syrian hamsters whose troponin C (TnC) moiety was exchanged with heterologous TnC from fast skeletal muscle of the rabbit. These experiments were designed to help define the role of the various classes of Ca2+-binding sites on TnC in setting the characteristic sensitivities for activations of cardiac and skeletal muscles. Thin trabeculae were skinned and about 75% of their troponin C extracted by chemical treatment. Tension development on activations by Ca2+ and Sr2+ was found to be nearly fully blocked in such TnC extracted preparations. Troponin C contents and the ability to develop tension on activations by Ca2+ and Sr2+ was permanently restored after incubation with 2-6 mg/ml purified TnC from either rabbit fast-twitch skeletal muscle (STnC) or the heart (CTnC, cardiac troponin C). The native (skinned) cardiac muscle is characteristically about 5 times more sensitive to activation by Sr2+ than fast muscle, but the STnC-loaded trabeculae gave response like fast muscle. Attempts were also made to exchange the TnC in psoas (fast-twitch muscle) fibers, but unlike cardiac muscle tension response of the maximally extracted psoas fibers could be restored only with homologous STnC. CTnC was effective in partially extracted fibers, even though the uptake of CTnC was complete in the maximally extracted fibers. The results in this study establish that troponin C subunit is the key in setting the characteristic sensitivity for tension control in the myocardium above that in the skeletal muscle. Since a major difference between skeletal and cardiac TnCs is that one of the trigger sites (site I, residues 28-40 from the N terminus) is modified in CTnC and has reduced affinity for Ca2+ binding, the possibility is raised that this site has a modulatory effect on activation in different tissues and limits the effectiveness of CTnC in skeletal fibers. 相似文献
18.
Role of creatine kinase in force development in chemically skinned rat cardiac muscle 总被引:1,自引:0,他引:1 下载免费PDF全文
The influence of phosphocreatine in the presence or absence of MgATP and MgADP was studied in Triton X-100-treated thin papillary muscles and ventricular strips of the rat heart. The pCa/tension relationships, the pMgATP/tension relationships, and the tension responses to quick length changes were analyzed. The results show three major consequences of the reduction of the phosphocreatine concentration in the presence of millimolar concentrations of the MgATP. (a) The resting tension and the maximal Ca2+-activated tension were increased, and the pCa/tension relationship was shifted toward higher pCa values and its steepness was decreased; these effects were enhanced by the inclusion of MgADP. (b) The time constant of tension recoveries after quick stretches applied during maximal activation was increased, while the extent of these recoveries was decreased. (c) The study of pMgATP/tension relationships in low Ca concentrations showed that the decrease in phosphocreatine induced a shift toward higher MgATP values with no changes in maximal rigor tension or the slope coefficient; these effects were increased by the increase in MgADP and were independent of the preparation diameter. Thus, modifications of the apparent Ca sensitivity and resting and maximal tension when phosphocreatine is decreased seem to be due to an increasing participation of rigor-like or slowly cycling cross-bridges spending more time in the attached state. These results suggest that endogenous creatine kinase is able to ensure maximal efficiency of myosin ATPase by producing a local high MgATP/MgADP ratio. 相似文献
19.
Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas. 总被引:18,自引:0,他引:18
We studied the morphology of rabbit psoas muscle fixed at increasing intervals of time in a chemical skinning solution (Wood et al., 1975), or after skinning and storage for times up to 1 week. The storage solution, in which the chemically skinned muscled fibers were kept at -20 degrees C, had the same ionic composition as the skinning solution but was made with 50% (v/v) glycerol. Progressive structural changes occurred in fibers exposed to skinning solution. The structural changes were essentially complete after 24-48 hr in skinning solution and no further changes were detected in fibers stored for periods up to 1 week. Structural changes were: (i) holes or gaps in the plasma membrane; (ii) swelling of mitochondria and disorganization of their internal structure; (iii) slight swelling of the sarcoplasmic reticulum; (iv) disappearance of sarcoplasmic reticulum (SR) feet from triadic gaps. Other changes included loss of glycogen between fibrils and extraction of myoplasm, or the change of its staining properties. All architectural elements of the SR, except "feet", remained during skinning and storage, and the SR remained able to accumulate calcium. The morphology of the myofilaments during chemical skinning and during storage did not differ from control fibers. We conclude that chemical skinning alters the gross structure of the plasma membrane and mitochondria, but produces minimal changes in the sarcoplasmic reticulum and contractile proteins. 相似文献
20.
Evidence that the Sr2+ activation properties of cardiac troponin C are altered when substituted into skinned skeletal muscle fibers 总被引:1,自引:0,他引:1
W G Kerrick H G Zot P E Hoar J D Potter 《The Journal of biological chemistry》1985,260(29):15687-15693
Troponin C (TnC) was extracted from skinned skeletal muscle fibers by a method similar to that used previously on myofibrils (Zot, H.G., and Potter, J.D. (1982) J. Biol. Chem. 257, 7678-7683) and replaced with either skeletal (fast-twitch) or cardiac TnC. The relationship between isometric tension and Sr2+ concentration remained essentially the same before removal and after replacement with skeletal or cardiac TnC. Therefore, the origin of the TnC made no difference in the Sr2+ activation properties of the skinned fiber. In contrast, the activation of skinned cardiac fibers is approximately an order of magnitude more sensitive to Sr2+ than skinned skeletal fibers. These results show that the affinity of cardiac TnC for Sr2+ is altered when substituted into skinned skeletal muscle fibers through protein-protein interactions. 相似文献