首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transpiration response of excised primary Avena leaves was studied when pulse perturbations were given to the water regulatory system. Repeated light pulses given to the leaf caused regularly alternating transpiration responses, i.e. the magnitude alternated regularly between a high and a low value. This effect, denoted alternating pulse response, could be recorded under quite different light pulse conditions but was not found when the pulse interval was too long or too short (longer than about 60 min. shorter than about 15 min). Sodium chloride given to the transpiration stream induced and increased the effect. Alternating pulse response could also be recorded when mannitol pulses were given to the root system of intact plants.  相似文献   

2.
The action of D2O on oscillatory transpiration of Avena plants was investigated. D2O affects the amplitude and the period of the oscillations when given as a root medium to intact plants. The period is then dependent on the amplitude. From such experiments it is not possible to conclude whether the period change is simply due to the changed amplitude or to a change in the stomatal parameters. When given to xylem compressed, excised plants without roots, the D2O hardly affects the amplitude of the oscillations but the period is increased. Thus, the period of the self-sustained transpiratory oscillations is lengthened by D2O action on the stomatal parameters. Phase and amplitude changes of the oscillatory transpiration caused by short D2O pulses given both to intact and excised plants, are discussed. The following conclusion is emphasized: a substance which affects the root system can also cause profound changes in the stomatal water regulation.  相似文献   

3.
The oscillatory transpiration of 6 days old Avena plants was investigated with respect to the water potential of the root medium. The desired water potential was obtained by means of mannitol solutions. When the water potential was lowered (“mannitol step”), the amplitude of the oscillations decreased. Below –3.0 bars no oscillations persisted. A detailed study was made of the phase changes of the oscillations caused by a short time decrease of the water potential of the root medium (“mannitol pulse”). The duration of these short term treatments was either 9.0, 3.0 or J.5 min. The experimental results are discussed on the basis of an electric analogue previously presented in the literature. Published simulations based on the model were in clear contrast to the present experimental results as well as to earlier results in the literature. However, simulations in the present paper showed that the model could explain the experimental results if suitable parameter values were chosen.  相似文献   

4.
Xylem vessels in the lower part of the leaf of young Avena plants have been exposed to deformation by application of an external pressure. In this way a resistance to the water flow at the deformation site has been achieved, inducing undamped oscillations in transpiration and water uptake, even after removal of the root system.  相似文献   

5.
Oscillations in transpiration and water uptake of individual, young oat plants have been studied. The free-running period of these oscillations was about 30 minutes. Conditions were reached under which the oscillations were sustained for about two days. Short perturbations were given to the transpiration oscillations, the perturbations consisting of a short time increase or decrease in the illumination. The phase shifts of the oscillations as well as the amplitude effects caused by these perturbations were investigated. Simultaneous recordings of transpiration and water uptake of a single plant showed that these functions were oscillating in phase. Both oscillations disappeared if the leaf was excised.  相似文献   

6.
I. R. Cowan 《Planta》1972,106(3):185-219
Summary Measurements of transpiration, leaf water content, and flux of water in a cotton plant exhibiting sustained oscillations, in stomatal conductance are presented, and a model of the mechanism causing this behaviour is developed. The dynamic elements, of the model are capacitors—representing the change of water content with water potential in mesophyll, subsidiary and guard cells—interconnected by resistances representing flow paths in the plant. Increase of water potential in guard cells causes an increase in stomatal conductance. Increase of water potential in the subsidiary cells has the opposite effect and provides the positive feed-back which can cause stomatal conductance to oscillate. The oscillations are shown to have many of the characteristics of free-running oscillations in real plants. The behaviour of the model has been examined, using an analogue computer, with constraints and perturbations representing some of those which could be applied to real plants in physiological experiments. Aspects of behaviour which have been simulated are (a) opening and closing of stomata under the influence of changes in illumination, (b) transient responses due to step changes in potential transpiration, root permeability and potential of water surrounding the roots, (c) the influence of these factors on the occurrence and shape of spontaneous oscillations, and (d) modulation of sustained oscillations due to a circadian rhythm in the permeability of roots.  相似文献   

7.
Turgor pressure provides a sensitive indicator for irrigation scheduling. Leaf turgor pressure of Musa acuminate was measured by using the so‐called leaf patch clamp pressure probe, i.e. by application of an external, magnetically generated and constantly retained clamp pressure to a leaf patch and determination of the attenuated output pressure Pp that is highly correlated with the turgor pressure. Real‐time recording of Pp values was made using wireless telemetric transmitters, which send the data to a receiver base station where data are logged and transferred to a GPRS modem linked to an Internet server. Probes functioned over several months under field and laboratory conditions without damage to the leaf patch. Measurements showed that the magnetic‐based probe could monitor very sensitively changes in turgor pressure induced by changes in microclimate (temperature, relative humidity, irradiation and wind) and irrigation. Irrigation effects could clearly be distinguished from environmental effects. Interestingly, oscillations in stomatal aperture, which occurred frequently below turgor pressures of 100 kPa towards noon at high transpiration or at high wind speed, were reflected in the Pp values. The period of pressure oscillations was comparable with the period of oscillations in transpiration and photosynthesis. Multiple probe readings on individual leaves and/or on several leaves over the entire height of the plants further emphasised the great impact of this non‐invasive turgor pressure sensor system for elucidating the dynamics of short‐ and long‐distance water transport in higher plants.  相似文献   

8.
Hydrostatic pressures varying from 0 to 6.0 bar were applied to roots of intact Capsicum annuum L. cv. California Wonder plants growing in nutrient solution and the rates of transpiration, and net CO2 assimilation, apparent compensation point and leaf water potential measured. Increasing the pressure on the roots of plants with roots in solution with either -0.5 or -5.0 bar osmotic potential with 1 bar increments resulted in a decrease in transpiration. With the application of 1 or 2 bar pressure the rate of transpiration returned to near or above the original rate. An application of 3 or 4 bar pressure reduced the rate of transpiration of all plants. The transpiration of plants with roots in solution with -0.5 bar osmotic potential remained at the reduced rate for as long as these pressures were maintained. The transpiration of plants with roots in solution with -5.0 bar was only temporarily suppressed at these pressures. Changing the applied pressure from 3 or 4 bar to 0 resulted in a rapid increase in transpiration which lasted approximately 15 minutes. This was followed by a decrease in transpiration to a rate lower than before the pressure was applied. The pattern of response was similar for plants at low or high light intensity or at normal or low CO2 concentrations. When leaf diffusive resistance was 6.0 s cm?1 or greater, changes in net CO2 assimilation were similar to those of transpiration. The apparent CO2 compensation point increased as pressure was applied and decreased with a release in pressure. Leaf water potential increased with an increase in pressure and decreased with a decrease in pressure. The changes in leaf water potential were frequently but not always proportional to changes in pressure. It is postulated that the respouses noted were due to changes in resistance to flow of water from xylem terminals through the mesophyll cells and stomatal cavities to the atmosphere.  相似文献   

9.
Rapid, Blue-Light Induced Transpiration in Avena   总被引:2,自引:0,他引:2  
The transpiration responses of primary Avena leaves to blue-light pulses were investigated. Only light with wave length shorter than 524 nm can produce the rapid transpiration response. The action spectrum has a maximum around 450 nm. The rapid transpiration response induced by blue-light pulses successively disappeared in long-term experiments if the plant was kept in darkness between the pulses. However, if visible light was given to the plant between the pulses, the rapid response was restored. The magnitude of the rapid transpiration response was investigated under different conditions of background illumination and blue-light exposure. Saturation of the response was obtained with an irradiation level of 1.5–2 mW.cm?2 (5 min pulses) and with a pulse duration of 4 min (pulse irradiance 2 mW.cm?2). A pulse duration of 3 s was sufficient to produce a significant rapid response at an irradiation level of 2 mW.cm?2.  相似文献   

10.
内陆干旱区典型旱生植物蒸腾耗水量模拟研究   总被引:2,自引:0,他引:2  
张阳阳  陈喜  高满  刘秀强 《生态学报》2021,41(19):7751-7762
内陆干旱区植物耗水量是生态恢复和水资源管理的重要依据。参照甘肃省民勤县青土湖附近气象条件、干旱区典型植物生理特征以及土壤水力特征参数,采用Tardieu-Davies模型(气孔导度模型),计算在适宜和极限生态地下水埋深下7种典型植物生长季蒸腾耗水量,并与国内外研究成果对比,得出以下结论:适宜、极限生态地下水埋深下,7种植物生长季内平均蒸腾量分别为793、602 mm。不同植物蒸腾量差异大,适宜生态地下水位埋深下水生植物芦苇(Phragmites australis)、河岸带植被柽柳(Tamarix chinensis)蒸腾量最大,分别为1292、1147 mm;耐旱性强的荒漠植被梭梭(Haloxylon ammodendron)蒸腾量最小,为279 mm;其它植被盐节木(Halocnemum strobilaceum)(940 mm)、罗布麻(Poacynum hendersonii)(913 mm)、白刺(Nitraria tangutorum)(534 mm)、胡杨(Populus euphratica)(448 mm)蒸腾量依次减小。由适宜生态地下水埋深降低至极限生态地下水埋深时,植物蒸腾量平均减少24%。耐旱性强的梭梭、白刺减幅大,分别为53、35%;耐旱性弱的芦苇、柽柳减幅小,分别为19、13%。  相似文献   

11.
The transpiration rate of oat plants, 6 days old, has been investigated. Dependent on the irradiance level of the white light used in the experiments, the transpiration rate oscillated with different period times. In darkness or at low irradiances the period was about 100–110 min. At higher irradiances the period was about 40 min. At intermediate irradiances autocorrelation analysis was used to find the period content of the transpiration rate. It was concluded that two oscillatory systems were present in the plants, characterized by their different periods. When plants cultivated in a light/dark cycle were used, the transpiration oscillations were influenced by a circadian rhythm. Oscillations in darkness were then most pronounced in the mornings. Plants cultivated in continuous light did not show such a circadian rhythm, but the oscillations died out after about 20 h. Kinetin induced transpiration oscillations in darkness and made them sustain for a longer time.  相似文献   

12.
The Transport of Sugar, Water, and Ions into Developing Potato Tubers   总被引:1,自引:0,他引:1  
BAKER  D. A.; MOORBY  J. 《Annals of botany》1969,33(4):729-741
Diurnal variations in the pattern of movement of sugars, water,and ions into developing tubers of the potato (Solanum tuberosumL.) were investigated. It was demonstrated using a recordingbalance that large increases in the fresh weight of tubers occurduring a dark period of reduced transpiration. Movement of assimilated14C did not reflect similar large changes and much of the weightchange observed is considered to be fluctuations in tuber watercontent. This water was shown to be moving predominantly throughthe xylem of the stolon by introducing labelled ions, 32P and89Sr into the plants. 32P, which moves in both xylem and phloem,was transported to the tuber at a constant rate whereas 89Sr,which behaves like calcium and is relatively immobile in thephloem, only moved into the tuber during the dark period. As well as the over-all long-term diurnal fluctuations severalsmaller rapid changes were recorded in the rate of water movement.Switching from darkness to light caused a transient increasefollowed by a rapid decrease in tuber weight. Switching fromlight to darkness caused a rapid increase in tuber weight. Insome experiments small oscillations in tuber weight were recorded.The possibility of these oscillations being directly relatedto cyclic changes in transpiration is considered. The resultsare discussed in relation to solute movement within plants.  相似文献   

13.
Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO2 fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Jülich pressure probe where a small oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO2 fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants.  相似文献   

14.
Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (ΨL) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (Lsc) and transpiration on a unit leaf area basis (E) were maximal in plants with approximately 0.2 m2 leaf area and decreased with increasing plant size. These changes in Fand Lsc were nearly parallel, which prevented φL in larger plants from decreasing to levels associated with substantial loss in xylem conductivity caused by embolism formation. Coordination of changes in E and leaf hydraulic properties was not mediated by declining leaf water status, since φL increased with plant size. Hydraulic constrictions were present at nodes and in the node-leaf sheath-leaf blade pathway. This pattern of constrictions is in accord with the idea of plant segmentation into regions differing in water transport efficiency and would tend to confine embolisms to the relatively expendable leaves at terminal positions in the pathway, thereby preserving water transport through the stem.  相似文献   

15.
Many experiments are conducted in greenhouses or growth chambers in which plants are grown in pots. Considerable research has shown that pots can have a limiting effect on overall plant growth. This research was undertaken to examine the effects of pot size specifically on transpiration response of maize (Zea mays L.) and soybean (Glycine max L.) plants undergoing water-deficit stress. Maize and soybean experiments were conducted similarly, but as separate experiments. Maize plants were grown in 2.3, 4.1, 9.1, and 16.2 l pots sealed to prevent water loss except by transpiration. For each pot size, plants were divided into two watering regimes, a well-watered control and a water-deficit regime. Water deficits were imposed by simply not rewatering the pots. Soybean was examined in a similar manner, but only the three larger pot sizes were used in the experiment. For both maize and soybean, and in both watering regimes, there was a significant reduction of shoot dry weight and total transpiration with decreasing pot size. However, there were no significant differences among pot sizes in the fraction of transpirable soil water (FTSW) point at which transpiration began to decline (FTSW0.31 for maize and 0.35 for soybean) or in the overall relationship of transpiration rate to soil water content in response to water deficits. These results indicated that, regardless of pot size or plant size, the overriding factor determining transpirational response to drought stress was soil water content.  相似文献   

16.
Ripley BS  Pammenter NW 《Oecologia》2004,139(4):535-544
Water status in relation to standing biomass and leaf area indices (LAI) of the subtropical foredune species Arctotheca populifolia, Ipomoea pes-caprae and Scaevola plumieri were studied in the Eastern Cape, South Africa. The plants showed little evidence of water stress, never developing leaf water potentials more negative than –1.55 MPa, a value which is typical of mesophytes rather than xerophytes. The plants showed no seasonal changes in osmotic potential, an indication that they did not need to osmoregulate, nor were there significant alterations in tissue elasticity. Turgor potential for the most part remained positive throughout the day or recovered positive values at night, a condition suitable for the maintenance of growth that may be essential to cope with sand accretion. All three species show relatively high transpiration rates and only I. pes-caprae showed any evidence of strong limitations of transpiration rate through reductions in midday stomatal conductance. All three species had relatively high instantaneous water use efficiencies as a result of high assimilation rates rather than low transpiration rates. Simple water budgets, accounting for losses by transpiration and inputs from rainfall, suggest that the water stored in the dune sands is sufficient to meet the requirements of the plants, although water budgets calculated for I. pes-caprae suggest that this species may on occasion be water limited. The results suggest that it is the low biomass and LAI that lead to these favourable water relations.  相似文献   

17.
Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.  相似文献   

18.
In cultured Lymnaea stagnalis neurons, osmolarity increases (upshocks) rapidly elicited large membranous dilations that could be dislodged and pushed around inside the cell with a microprobe. Subsequent osmolarity decreases (downshocks) caused these vacuole-like dilations (VLDs) to disappear. Additional upshock/downshock perturbations resulted in repeated appearance/disappearance (formation/reversal) of VLDs at discrete sites. Confocal microscopy indicated that VLDs formed as invaginations of the substrate-adherent surface of the neuron: extracellular rhodamine-dextran entered VLDs as they formed and was expelled during reversal. Our standard VLD-inducing perturbation was: 2–4 min downshock to distilled water, upshock to normal saline. However, a wide range of other osmotic perturbations (involving osmolarities up to 3.5x normal, perturbations with or without Ca2+, replacement of ions by sucrose) were also used. We concluded that mechanical, not chemical, aspects of the osmo-mechanical shocks drove the VLD formation and reversal dynamics and that extracellular Ca2+ was not required.Following a standard perturbation, VLDs grew from invisible to their full diameter (>10 m) in just over a minute. Over the next 0.5–3 hr in normal saline, neurons recovered. Recovery eliminated any visible VLDs and was accompanied by cytoplasmic turmoil around the VLDs. Recovery was prevented by cytochalasin B, brefeldin A and N-ethylmaleimide but not by nocodazole. In striking contrast, these drugs did not prevent repeated VLD formation and reversal in response to standard osmo-mechanical perturbations; VLD disappearance during reversal and during recovery are different.The osmo-mechanical changes that elicited VLDs may, in an exaggerated fashion, mimic tension changes in extending and retracting neuntes. In this context we postulate: (a) the trafficking or disposition of membrane between internal stores and plasma membrane is mechano sensitive, (b) normally, this mechanosensitivity provides an on demand system by which neurons can accommodate stretch/release perturbations and control cell shape but, (c) given sudden extreme mechanical stimuli, it yields VLDs. Present address: Biology Department, Washington University, St Louis, MO 63130-4899This work was supported by NSERC of Canada research grants to CEM and to LRM. CR was the recipient of a postdoctoral fellowship from the Ministere francais de la Recherche et de l'Espace. We thank J-M. Trifaro for the use of his image processing equipment.  相似文献   

19.
Rhizomes ofHydrocotyle plants from three contrasting habitats were cloned and the ramets grown under controlled environmental conditions. Measurements of net photosynthesis, transpiration, and total leaf diffusion resistance were used to examine possible physiological adaptations to specific field environments. Increasing dryness of the growth chamber environment had large effects on gas exchange (CO2 and water vapor) and on total diffusion resistance of plants from a pond, moderate effects on plants from a mesic forest, but plants from a coastal sand dune were unaffected by the experimentally imposed dryness. Thus the 3 Hydrocotyle types demonstrated adaptive physiological reponses to their specific field habitats. Periodic stomatal oscillations were induced in ramets from the pond by sharply increasing irradiance, but the adaptiveness of the oscillations cannot be determined with the evidence at hand.No stomatal closure could be induced by atmospheric dryness alone as long as soil and plant dessication were prevented. There were no observable differences in stomatal response to increasing atmospheric vapor pressure deficits.  相似文献   

20.
蒸腾导度模型是衡量冠层-大气界面水汽输出的重要阻力模型,研究其特征及对环境因子的响应,为揭示森林冠层-大气界面水汽输出阻力机制提供理论依据。以首都圈森林生态系统定位观测研究站侧柏林为研究对象,采用TDP热探针法测定侧柏林树干液流密度,同步监测光合有效辐射、饱和水汽压差、气温、风速等主要环境因子,分析冠层导度和空气动力学导度的动态变化,构建冠层-大气蒸腾导度模型并模拟,明确冠层-大气蒸腾导度对各环境因子的响应关系。结果表明:蒸腾导度季节变化表现为非生长季与冠层导度趋势一致,生长季与空气动力学导度趋势一致,全年均为单峰趋势。冬季蒸腾导度与冠层导度保持较稳定差值(45 mol m^(-2 )s-1左右),其他季节蒸腾导度与冠层导度、空气动力学导度的最大差值,均在各季节冠层导度、空气动力学导度的峰值水平。全年日均蒸腾导度冬季最大(86.92 mol m^(-2 )s-1),其他季节较小且稳定(40—50 mol m^(-2 )s-1之间)。在非生长季各环境因子对蒸腾导度的影响与对冠层导度的影响基本一致,温度为主要影响因子(r=-0.198),其他环境因子影响较小(r<0.1);在生长季中风速为主要影响因子(r=0.488),光合有效辐射(r=0.228)和饱和水汽压差(r=-0.299)的影响明显升高,温度的影响降低(r=0.114)。蒸腾导度模型较好的模拟了冠层-大气界面侧柏蒸腾不同季节的变化规律,阐明了各环境因子和冠层导度、空气动力学导度对蒸腾导度的影响机制,证实在生长季应重视空气动力学导度对蒸腾的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号