共查询到20条相似文献,搜索用时 0 毫秒
1.
Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein 总被引:7,自引:0,他引:7
Liu J Stevens J Rote CA Yost HJ Hu Y Neufeld KL White RL Matsunami N 《Molecular cell》2001,7(5):927-936
The adenomatous polyposis coli (APC) tumor-suppressor protein, together with Axin and GSK3beta, forms a Wnt-regulated signaling complex that mediates phosphorylation-dependent degradation of beta-catenin by the proteasome. Siah-1, the human homolog of Drosophila seven in absentia, is a p53-inducible mediator of cell cycle arrest, tumor suppression, and apoptosis. We have now found that Siah-1 interacts with the carboxyl terminus of APC and promotes degradation of beta-catenin in mammalian cells. The ability of Siah-1 to downregulate beta-catenin signaling was also demonstrated by hypodorsalization of Xenopus embryos. Unexpectedly, degradation of beta-catenin by Siah-1 was independent of GSK3beta-mediated phosphorylation and did not require the F box protein beta-TrCP. These results indicate that APC and Siah-1 mediate a novel beta-catenin degradation pathway linking p53 activation to cell cycle control. 相似文献
2.
Garrison JB Correa RG Gerlic M Yip KW Krieg A Tamble CM Shi R Welsh K Duggineni S Huang Z Ren K Du C Reed JC 《Molecular cell》2011,41(1):107-116
ARTS (apoptosis-related protein in the TGF-β signaling pathway) is a mitochondrial protein that binds XIAP (X-linked inhibitor of apoptosis protein) upon entering the cytosol, thus promoting cell death. Expression of ARTS is lost in some malignancies. Here, we show that ARTS binds to XIAP at BIR1, a domain distinct from the caspase-binding sites. Furthermore, ARTS interacts with the E3 ligase Siah-1 (seven in absentia homolog 1) to induce ubiquitination and degradation of XIAP. Cells lacking either Siah or ARTS contain higher steady-state levels of XIAP. Thus, ARTS serves as an adaptor to bridge Siah-1 to XIAP, targeting it for destruction. 相似文献
3.
Anna Maria Ochocka Samantha Nicol Miranda Cox Diane Milne David Meek 《FEBS letters》2009,583(4):621-626
The p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.
Structured summary
MINT-6823686:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by anti bait coimmunoprecipitation (MI:0006)MINT-6823707, MINT-6823722:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q62446) by pull down (MI:0096)MINT-6823775:P53 (uniprotkb:Q04637) physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)MINT-6823735, MINT-6823749:FKBP25 (uniprotkb:Q62446) binds (MI:0407) to MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823761:Ubiquitin (UNIPROTKB:62988)P physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823669:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by two hybrid (MI:0018) 相似文献4.
5.
Ubiquitin proteasomal pathway (UPP) is the principle mechanism for protein catabolism and affects cellular processes critical for survival and proliferation. Levels of tumor suppressor protein p53 are very low in cells due to its rapid turnover by UPP-mediated degradation. While p53 is mutated in human cancers, most human melanomas maintain wild-type conformation. In this study, to investigate the effects of UPP inhibitor invitro and in vivo, we used a genetically-engineered mouse model (GEMM) that has the same genetic alterations as those of human melanomas. Melanoma cells were established from mouse tumors and named 8B20 cells. Treatment of 8B20 cells with the UPP inhibitors, MG132 and clasto-lactacystin-β-lactone, led to an increase in levels of p53 while treatment with non-proteasomal inhibitors did not alter p53 levels. UPP inhibitors induced formation of heavy molecular weight ubiquitinated proteins, a hallmark of UPP inhibition, and p53-specific poly-ubiquitinated products in 8B20 cells. To further decipher the mechanism of p53 stabilization, we investigated half-life of p53 in cells treated with cycloheximide to block de novo protein synthesis. Treatment of 8B20 cells with MG132 led to an increase in the half-life of p53. Further analysis revealed that p53 stabilization was not mediated by phosphorylation of Ser-15 and Ser-20 residues. In vivo studies showed that MG132 induced p53 overexpression and reduced tumor growth, suggesting an important role of p53 stabilization in controlling melanoma. Taken together, our studies provide a proof of principle for using a GEMM to address the mechanisms of action and efficacy of melanoma treatment. 相似文献
6.
7.
Miyagishi M Fujii R Hatta M Yoshida E Araya N Nagafuchi A Ishihara S Nakajima T Fukamizu A 《The Journal of biological chemistry》2000,275(45):35170-35175
CBP and its homologue p300 play significant roles in cell differentiation, cell cycle, and anti-oncogenesis. We demonstrated that beta-catenin, recently known as a potent oncogene, and CBP/p300 are associated through its CH3 region, which is a primary target of adenoviral oncoprotein E1A and various nuclear proteins, such as p53, cyclin E, and AP-1, and both are colocalized in the nuclear bodies. CBP/p300 potentiated Lef-mediated transactivation of beta-catenin, and E1A, a potent inhibitor of CBP/p300, repressed its transactivation. Furthermore, overexpression of stable beta-catenin mutant competitively suppressed the p53-dependent pathway. These may be a key mechanism of beta-catenin involved in oncogenic events underlying disruption of tumor suppressor function through CBP/p300. 相似文献
8.
CacyBP/SIP,a calcyclin and Siah-1-interacting protein,binds EF-hand proteins of the S100 family 总被引:4,自引:0,他引:4
Filipek A Jastrzebska B Nowotny M Kuznicki J 《The Journal of biological chemistry》2002,277(32):28848-28852
Recently, a human ortholog of mouse calcyclin (S100A6)-binding protein (CacyBP) called SIP (Siah-1-interacting protein) was shown to be a component of a novel ubiquitinylation pathway regulating beta-catenin degradation (Matsuzawa, S., and Reed, J. C. (2001) Mol. Cell 7, 915-926). In murine brain, CacyBP/SIP is expressed at a high level, but S100A6 is expressed at a very low level. Consequently we carried out experiments to determine if CacyBP/SIP binds to other S100 proteins in this tissue. Using CacyBP/SIP affinity chromatography, we found that S100B from the brain extract binds to CacyBP/SIP in a Ca2+-dependent manner. Using a nitrocellulose overlay assay with 125I-CacyBP/SIP and CacyBP/SIP affinity chromatography, we found that this protein binds purified S100A1, S100A6, S100A12, S100B, and S100P but not S100A4, calbindin D(9k), parvalbumin, and calmodulin. The interaction of S100 proteins with CacyBP/SIP occurs via its C-terminal fragment (residues 155-229). Co-immunoprecipitation of CacyBP/SIP with S100B from brain and with S100A6 from Ehrlich ascites tumor cells suggests that these interactions are physiologically relevant and that the ubiquitinylation complex involving CacyBP/SIP might be regulated by S100 proteins. 相似文献
9.
Okamura S Arakawa H Tanaka T Nakanishi H Ng CC Taya Y Monden M Nakamura Y 《Molecular cell》2001,8(1):85-94
Using the differential display method combined with a cell line that carries a well-controlled expression system for wild-type p53, we isolated a p53-inducible gene, termed p53DINP1 (p53-dependent damage-inducible nuclear protein 1). Cell death induced by DNA double-strand breaks (DSBs), as well as Ser46 phosphorylation of p53 and induction of p53AIP1, were blocked when we inhibited expression of p53DINP1 by means of an antisense oligonucleotide. Overexpression of p53DINP1 and DNA damage by DSBs synergistically enhanced Ser46 phosphorylation of p53, induction of p53AIP1 expression, and apoptotic cell death. Furthermore, the protein complex interacting with p53DINP1 was shown to phosphorylate Ser46 of p53. Our results suggest that p53DINP1 may regulate p53-dependent apoptosis through phosphorylation of p53 at Ser46, serving as a cofactor for the putative p53-Ser46 kinase. 相似文献
10.
11.
Ren C Li L Goltsov AA Timme TL Tahir SA Wang J Garza L Chinault AC Thompson TC 《Molecular and cellular biology》2002,22(10):3345-3357
We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53(+/+) and HCT116 p53(-/-), as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4',6'-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities. 相似文献
12.
13.
Éric Villiard Henner Brinkmann Olga Moiseeva Frédérick A Mallette Gerardo Ferbeyre Stéphane Roy 《BMC evolutionary biology》2007,7(1):180
Background
Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. 相似文献14.
15.
16.
17.
Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis 总被引:4,自引:0,他引:4
下载免费PDF全文

Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE. 相似文献
18.
19.
Fibrate drugs improve cardiovascular health by lowering plasma triglycerides, normalize low density lipoprotein levels, and raise high density lipoprotein (HDL) levels in patients with dyslipidemias. The HDL-raising effect of fibrates has been shown to be due in part to an increase in human apolipoprotein AI gene expression. However, it has recently been shown that fibrates can affect HDL metabolism in mouse by significantly decreasing hepatic levels of the HDL receptor scavenger receptor B-I (SR-BI) and the PDZ domain containing protein PDZK1. PDZK1 is essential for maintaining hepatic SR-BI levels. Therefore, decreased SR-BI might be secondary to decreased PDZK1, but the mechanism by which fibrates lower SR-BI has not been elucidated. Here we show that feeding PDZK1-deficient mice fenofibrate resulted in the near absence of SR-BI in liver, definitively demonstrating that the effect of fenofibrate on SR-BI is PDZK1-independent. Metabolic labeling experiments in primary hepatocytes from fenofibrate-fed mice demonstrated that fenofibrate enhanced the degradation of SR-BI in a post-endoplasmic reticulum compartment. Moreover, fenofibrate-induced degradation of SR-BI was independent of the proteasome, calpain protease, or the lysosome, and antioxidants did not inhibit fenofibrate-induced degradation of SR-BI. Using metabolic labeling coupled with cell surface biotinylation assays, fenofibrate did not inhibit SR-BI trafficking to the plasma membrane. Together, the data support a model in which fenofibrate enhances the degradation of SR-BI in a post-ER, post-plasma membrane compartment. The further elucidation of this novel degradation pathway may provide new insights into the physiological and pathophysiological regulation of hepatic SR-BI. 相似文献
20.
S Bae JH Jung K Kim IS An SY Kim JH Lee IC Park YW Jin SJ Lee S An 《FEBS letters》2012,586(19):3057-3063
Murine double minute (MDM2) is an E3 ligase that promotes ubiquitination and degradation of tumor suppressor protein 53 (p53). MDM2-mediated regulation of p53 has been investigated as a classical tumorigenesis pathway. Here, we describe TRIAD1 as a novel modulator of the p53-MDM2 axis that induces p53 activation by inhibiting its regulation by MDM2. Ablation of TRIAD1 attenuates p53 levels activity upon DNA damage, whereas ectopic expression of TRIAD1 promotes p53 stability by inhibiting MDM2-mediated ubiquitination/degradation. Moreover, TRIAD1 binds to the C-terminus of p53 to promote its dissociation from MDM2. These results implicate TRIAD1 as a novel regulatory factor of p53-MDM2.Structured summary of protein interactions:p53 physically interacts with Mdm2 and Triad1 by anti tag coimmunoprecipitation (View Interaction: 1, 2, 3)Mdm2physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Mdm2 by anti tag coimmunoprecipitation (View interaction)Triad1binds to p53 by pull down (View interaction)Mdm2physically interacts with p53 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction) 相似文献