首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of prostaglandin E2 (PGE2), forskolin, and dibutyryl cAMP on arachidonic acid release, inositol phospholipid metabolism, and Ca2+ mobilization was investigated. The chemotactic tripeptide (formylmethionyl-leucyl-phenylalanine (fMLP))-induced arachidonic acid release in neutrophils was significantly inhibited by PGE2, forskolin, and dibutyryl cAMP. Among them, PGE2 was found to be the most potent inhibitor. However, when neutrophils were stimulated by Ca2+ ionophore A23187, such inhibitory effect by these agents was less marked. PGE2 also suppressed the enhanced incorporation of [32P]Pi into phosphatidic acid (PA) and phosphatidylinositol in a dose-dependent manner in fMLP-stimulated neutrophils. Also in this case, Ca2+ ionophore-induced alterations were hardly inhibited by PGE2. As well, PGE2 inhibited the fMLP-induced decrease of [3H]arachidonic acid in phosphatidylcholine and phosphatidylinositol and the increase in PA very significantly. But the inhibitory effect by PGE2 was found to be weak in Ca2+ ionophore-stimulated neutrophils. These results suggest that a certain step from receptor activation to Ca2+ influx is mainly inhibited by PGE2. Concerning polyphosphoinositide breakdown, PGE2 did not affect the fMLP-induced decrease of [32P]phosphatidylinositol 4,5-bisphosphate which occurred within 10 s but inhibited the subsequent loss of [32P]phosphatidylinositol 4-phosphate and [32P]phosphatidylinositol, suggesting that the compensatory resynthesis of phosphatidylinositol 4,5-bisphosphate was inhibited. On the other hand, fMLP-induced diacylglycerol formation was suppressed for the early period until 1 min, but with further incubation, diacylglycerol formation was rather accelerated by PGE2. Moreover, the inhibition of PA formation by PGE2 became evident after a 30-s time lag, suggesting that the conversion of diacylglycerol to PA is inhibited by PGE2. The formation of water-soluble products of inositol phospholipid degradation by phospholipase C, such as inositol phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate, was also suppressed by PGE2 treatment. However, the inhibition was not so marked as that of arachidonic acid release and PA formation. Thus, PGE2 appeared to inhibit not only initial events such as polyphosphoinositide breakdown but also turnover of inositol phospholipids. PGE2, forskolin, and dibutyryl cAMP did not block the rapid elevation of intracellular Ca2+ which was observed within 10 s in fMLP-stimulated neutrophils. However, subsequent increase in intracellular Ca2+ which was caused from 10 s to 3 min after stimulation was inhibited by PGE2, forskolin, and dibutyryl cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. Because cellular pools of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate turn over rapidly during phospholipase C stimulation, the continuing production of inositol phosphates requires continuing synthesis from phosphatidylinositol of the polyphosphoinositides. In the present study in adrenal chromaffin cells, we examined the effects of nicotinic stimulation and depolarization in intact cells and micromolar Ca2+ in permeabilized cells on the levels of labeled polyphosphoinositides. We compared the effects to muscarinic stimulation in intact cells and GTP gamma S in permeabilized cells. 2. Nicotinic stimulation, elevated K+, and muscarinic stimulation cause similar production of inositol phosphates (D. A. Eberhard and R. W. Holz, J. Neurochem. 49:1634-1643, 1987). Nicotinic stimulation and elevated K+ but not muscarinic stimulation increased the levels of [3H]inositol-labeled phosphatidylinositol phosphate by 30-60% and [3H]phosphatidylinositol bisphosphate by 25-30%. The increase required Ca2+ in the medium, was maximal by 1-2 min, and was not preceded by an initial decrease in phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. 3. In digitonin-permeabilized cells, Ca2+ caused as much as a twofold increase in [3H]phosphatidylinositol phosphate and [3H]phosphatidylinositol bisphosphate. Similarly, Ca2+ enhanced the production of [32P]phosphatidylinositol phosphate and [32P]phosphatidylinositol bisphosphate in the presence of [gamma-32P]ATP. In contrast, GTP gamma S in permeabilized cells decreased polyphosphoinositides in the presence or absence of Ca2+. 4. The ability of Ca2+ to increase the levels of the polyphosphoinositides decayed with time after permeabilization. The effect of Ca2+ was increased when phosphoesterase and phospholipase C activities were inhibited by neomycin. 5. These observations suggest that Ca2+ specifically enhances polyphosphoinositide synthesis at the same time that it activates phospholipase C.  相似文献   

3.
Swiss 3T3 cells incubated for 60 h with [3H]inositol incorporated radioactivity into phosphatidylinositol (PI) and the two polyphosphoinositides phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). On stimulation with platelet-derived growth factor (PDGF) there were significant increases in the levels of inositol 1-phosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). The effect of PDGF and IP3 on Ca2+ mobilization was studied in both intact cells and in 'leaky' cells that had been permeabilized with saponin. In intact cells, PDGF stimulated the efflux of 45Ca2+, whereas IP3 had no effect. Conversely, IP3 stimulated 45Ca2+ efflux from 'leaky' cells, which were insensitive to PDGF. 'Leaky' cells, which accumulated 45Ca2+ to a steady state within 20 min, were found to release approx. 40% of the label within 1 min after addition of 10 microM-IP3. This stimulation of 45Ca2+ release by IP3 was reversible and was also dose-dependent, with a half-maximal effect at approx. 0.3 microM. It seems likely that an important action of PDGF on Swiss 3T3 cells is to stimulate the hydrolysis of PIP2 to form IP3 and diacylglycerol, both of which may function as second messengers. Our results indicate that IP3 mobilizes intracellular Ca2+, and we propose that diacylglycerol may act through C-kinase to activate the Na+/H+ antiport. By generating two second messengers, PDGF can simultaneously elevate the intracellular level of Ca2+ and alkalinize the cytoplasm by lowering the level of H+.  相似文献   

4.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

5.
Membranes prepared from DMSO-differentiated HL60 cells labeled with [3H]inositol hydrolyze polyphosphoinositides in a Ca2+-dependent manner, generating inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). Incubation of membranes with GTP or GTP gamma S reduces the concentration of Ca2+ required for activation. This nucleotide effect is potentiated by formyl-Met-Leu-Phe (FMLP). Pertussis toxin inhibits FMLP-induced augmentation, but not the induction of IP2/IP3 formation by GTP or GTP gamma S. These results suggest that differentiated HL60 cells contain a membrane-associated phospholipase C that degrades polyphosphoinositides and that activation of this enzyme is mediated by at least two guanine nucleotide binding proteins, one of which is linked to FMLP receptors and is pertussis toxin sensitive.  相似文献   

6.
The effect of antigen on the metabolism of polyphosphoinositides was investigated in sensitized rat peritoneal mast cells. Addition of antigen to rat peritoneal mast cells prelabelled with [3H]arachidonic acid resulted in a very rapid decrease in the level of phosphatidylinositol 4-phosphate (DPI) within 5 sec, which appeared to precede the breakdown of phosphatidylinositol (PI), while there was no significant decline of PI 4,5-bisphosphate (TPI). The reduced levels of these phosphoinositides returned almost to control or even slightly higher values by 300 sec in parallel with the antigen-stimulated [32P]phosphate incorporation into these lipids. This early and transient disappearance in DPI prior to that in PI was also observed in [3H]glycerol-prelabelled cells. These data suggest that DPI degradation upon stimulation by antigen in mast cells may be an initial step in the histamine release process.  相似文献   

7.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

8.
1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.  相似文献   

9.
1. We have measured the breakdown of [3H]phosphatidylinositol in rabbit neutrophils prelabelled with [3H]glycerol by a pulse-chase procedure. With a view to defining a possible causal relationship between phosphatidylinositol breakdown and enzyme secretion in these cells, we have compared the characteristics of both these processes induced by either the receptor-directed agonist formylmethionyl-leucylphenylalanine (fMet-Leu-Phe) or the Ca2+-ionophore ionomycin. 2. The dependence on fMet-Leu-Phe concentration of phosphatidylinositol breakdown and secretion is identical (half-maximal at 0.3 nM). This is 30-fold less than that required for half-maximal occupation of receptors. 3. Both secretion and breakdown of phosphatidylinositol due to fMet-Leu-Phe are modulated by extracellular Ca2+. The sensitivity to Ca2+ of both processes is enhanced by pretreatment to deplete cell Ca2+. The concentration of Ca2+ required to cause half-maximal effects of both processes in Ca2+-depleted cells on stimulation with 1nM-fMet-Leu-Phe is 100 microM. Ionomycin-stimulated secretion and breakdown of phosphatidylinositol are completely dependent on extracellular Ca2+ over similar concentration ranges. 4. Both secretion and phosphatidylinositol breakdown due to fMet-Leu-Phe approach completion by 10s. With ionomycin these processes are slower, terminating by 2 min. 5. In the presence of [32P]Pi, labelling of [32P]phosphatidic acid reaches a maximum 15 min after stimulation with either fMet-Leu-Phe or ionomycin. This precedes the labelling of [32P]phosphatidylinositol and shows the expected precursor-product relationship. 6. We conclude from these results that in rabbit neutrophils a rise in cytosol [Ca2+] is both sufficient and necessary to cause secretion and phosphatidylinositol breakdown. In cells depleted of Ca2+, the occupation of receptors by fMet-Leu-Phe is without effect on these two processes.  相似文献   

10.
It is widely believed that the transduction pathway in the activation of the NADPH oxidase by formyl-methionyl-leucyl-phenylalanine (FMLP) in neutrophils involves the stimulation of phosphoinositide hydrolysis, the increase in [Ca2+]i and the activity of the Ca2+ and phospholipid dependent protein kinase C. The results presented here show that the activation of the respiratory burst by FMLP can be dissociated by the stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and Ca2+ changes. In fact, in neutrophils pretreated (primed) with non stimulatory doses of phorbol myristate acetate the respiratory burst by chemotactic peptide is greatly potentiated while the increase in [3H] inositol phosphates formation and in [Ca2+]i are depressed due to the inhibition of phospholipase C. This finding indicates that FMLP can trigger also a sequence of transduction reactions for the activation of the NADPH oxidase different from that involving the formation of the second messengers diacylglycerol and inositol phosphates and the increase in free Ca2+ concentration.  相似文献   

11.
Both epidermal growth factor (EGF) and vanadate can activate 45Ca2+ influx into A431 epidermal carcinoma cells, without a detectable lag period possibly via a voltage-independent calcium channel. 22Na+/H+ exchange and 45Ca2+ uptake are mutually independent. Neither EGF nor vanadate induce any significant change in the steady-state levels of [1,3-3H]glycerol-labeled diacylglycerol, myo-[2-3H]inositol-labeled inositol trisphosphate or in 32P-labeled polyphosphoinositides or phosphatidic acid over the first 10 min of treatment, suggesting that the EGF receptor is not directly coupled to phosphatidylinositol turnover and that the two ion fluxes are not induced via a kinase C-dependent pathway. An increase in turnover of polyphosphoinositides can be detected in EGF-stimulated cells by nonequilibrium labeling with [32P]phosphate, but the increase shows a lag of about 1 min under the conditions used to detect 45Ca2+ influx. Chelation of free Ca2+ decreases but does not abolish the EGF-stimulated turnover. Preincubation with tetradecanoylphorbol acetate or 1-oleoyl-2-acetylglycerol inhibits the increase in 45Ca2+ uptake by both EGF and vanadate. Tetradecanoylphorbol acetate alone does not alter the basal rate of influx when added together with 45Ca2+. Surprisingly, the activation by vanadate and its inhibition by phorbol 12-myristate 13-acetate are unaffected by down-regulation of the EGF receptors through prior incubation with growth factor. Therefore, in A431 cells the activation of Na+/H+ exchange and Ca2+ influx appear to be independent of phosphatidylinositol turnover, and the EGF receptor does not itself function as a Ca2+ channel. Vanadate apparently activates influx through a mechanism distinct from or distal to the EGF receptor.  相似文献   

12.
When a membrane preparation, obtained by freezing and thawing nerve endings labeled by preincubation with 32pi, is incubated in the presence of millimolar Ca2+, there is a rapid and selective loss of label from the polyphosphoinositides and a concomitant increase in labeled inositol di- and triphosphates recovered. When the membranes are not prelabeled and are exposed to [gamma-32P]ATP under similar conditions, phosphatidate labeling is enhanced, indicating increased availability of diacylglycerol. These observations provide evidence for the presence of membrane-bound, Ca2+-stimulated phosphodiesterase activity (phospholipase C) acting on endogenous polyphosphoinositides. The implications of these findings are discussed in respect to the "phosphatidylinositol" cycle.  相似文献   

13.
Effects of influenza A virus on human neutrophil calcium metabolism   总被引:10,自引:0,他引:10  
Bacterial superinfection in influenza A virus-related illness may in part be explained by virus-induced neutrophil dysfunction. We here provide evidence that this effect is related to abnormal calcium metabolism of virus-infected cells. Neutrophils exposed to influenza virus for 0.5 h at 37 degrees C showed depressed O2- generation and release of radiolabeled arachidonic acid upon stimulation with FMLP. The peak cytosolic Ca2+ level achieved by virus-infected neutrophils after FMLP stimulation was significantly depressed as is efflux of 45Ca2+. This deficient Ca2+ mobilization could not be attributed to alterations of inositol phosphate production or Ca2+ influx in response to FMLP, both of which were unaffected by prior virus infection. Given these findings, the immediate effects of influenza virus on neutrophil Ca2+ metabolism were examined. The virus itself caused a rise in cytosolic Ca2+ and an efflux of 45Ca2+ without any corresponding 45Ca2+ influx. Total cell Ca2+ however was not depleted as measured by atomic absorption. Influenza virus, therefore, causes neutrophil activation leading to significant perturbations in Ca2+ metabolism and later to impaired mobilization of Ca2+ stores. This system offers a model for phagocyte deactivation and an opportunity to define control mechanisms of signal transduction.  相似文献   

14.
Although it is evident that the chemotactic peptide FMLP activates O2-formation in neutrophils via the phosphoinositidase-mediated second messenger system, it is less clear how endogenous priming agents such as ATP and platelet activating factor potentiate FMLP action. In our study, we have examined the possible effects of the stable ATP analog adenosine 5'-O-[3-thiotriphosphate] (ATP gamma S) on cellular levels of inositol 1,4,5-trisphosphate, [Ca2+]i and diglyceride (DG), in resting and in FMLP-stimulated neutrophils. Although all three measures were increased in the presence of FMLP, only the increase in DG was enhanced by pretreatment (priming) with ATP gamma S. We also measured the accumulation of the phosphoinositide cycle intermediate cytidine 5'-diphosphate (CDP)-DG to assess possible effects of priming on phosphoinositide resynthesis. The addition of FMLP to [3H]cytidine-prelabeled neutrophils elicited an increase in the accumulation of [3H]CDP-DG that was maximally enhanced in cells that were pretreated with cytochalasin B. The stimulated accumulation of [3H]CDP-DG was completely reversed by the addition of myo-inositol. Treatment of [3H]cytidine-prelabeled neutrophils with ATP gamma S (10-100 microM) resulted in a dose-dependent synergistic increase in FMLP-stimulated [3H]CDP-DG accumulation, whereas ATP gamma S alone had no effect. The observed increases in DG and in [3H]CDP-DG, in contrast to inositol 1,4,5-trisphosphate and [Ca2+]i responses, correlates well with the ATP gamma S-priming of FMLP-induced O2-formation. A similar potentiation of FMLP-induced stimulation of CDP-DG formation was also observed with platelet-activating factor. It is proposed that the priming of FMLP responses in neutrophils proceeds via a mechanism that selectively enhances DG production through a mechanism that is independent of FMLP-induced breakdown of phosphatidylinositol bisphosphate.  相似文献   

15.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

16.
[3H]Arachidonic acid is released after stimulation of rabbit neutrophils with fMet-Leu-Phe or platelet-activating factor (PAF). The release is rapid and dose-dependent, and is inhibited in phorbol 12-myristate 13-acetate (PMA)-treated rabbit neutrophils. The protein kinase C (PKC) inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine (H-7) prevents this inhibition. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. [3H]Arachidonic acid release, but not the rise in the concentration of intracellular Ca2+, is inhibited in pertussis-toxin-treated neutrophils stimulated with PAF. The diacylglycerol kinase inhibitor R59022 increases the concentration of diacylglycerol and potentiates [3H]arachidonic acid release in neutrophils stimulated with fMet-Leu-Phe. This potentiation is not inhibited by H-7. These results suggest several points. (1) A rise in the intracellular concentration of free Ca2+ is not sufficient for arachidonic acid release in rabbit neutrophils stimulated by physiological stimuli. (2) A functional pertussis-toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for arachidonic acid release produced by physiological stimuli. (3) Agents that stimulate PKC potentiate arachidonic acid release, and this potentiation is not inhibited by H-7. These agents produce their actions in part by direct membrane perturbation.  相似文献   

17.
Changes in the movements of Na+, K+, and Ca+2 across rabbit neutrophils under conditions of lysosomal enzyme release have been studied. We have found that in the presence of cytochalasin B, the chemotactic factor formyl methionyl leucyl phenylalanine (FMLP) induces within 30 s large enhancements in the influxes of both 22Na+ and 45Ca+2 and an increase in the cellular pool of exchangeable calcium. The magnitude of the changes induced by cytochalasin B and FMLP exceeds that induced by FMLP or cytochalasin B alone, and cannot be explained on the basis of an additive effect of the two agents. However, these compounds either separately or together produce much smaller enhancements in 45Ca efflux. The divalent cation ionophore A23187 also produces a rapid and large increase in the influxes of both 22Na and 45Ca+2 in the presence and absence of cytochalasin B. We have also found an excellent correlation between calcium influx and lysosomal enzyme release. 42K influx is not significantly affected by any of these compounds. On the other hand, a large and rapid increase of 42K efflux is observed under conditions which give rise to lysosomal enzyme release. A flow diagram of the events that are thought to accompany the stimulation of polymorphonuclear leukocytes (PMNs) by chemotactic or degranulating stimuli is presented.  相似文献   

18.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

19.
Addition of gonadotropin releasing hormone (GnRH) to pituitary cells prelabeled with [32P]Pi or with myo-[2-3H]inositol, resulted in a rapid decrease in the level of [32P]phosphatidylinositol 4,5-bisphosphate (approximately 10 s), and in [32P]phosphatidylinositol 4-phosphate (approximately 1 min), followed by increased labeling of [32P]phosphatidylinositol and [32P]phosphatidic acid (1 min). GnRH stimulated the appearance of [3H]myo-inositol 1,4,5-trisphosphate (10 s), [3H]myo-inositol 1,4-bisphosphate (15 s), and [3H]myo-inositol 1-phosphate (1 min) in the presence of Li+ (10 mM). Li+ alone stimulated the accumulation of [3H]myo-inositol 1-phosphate and [3H]myo-inositol 1,4-bisphosphate but not [3H]myo-inositol 1,4,5-trisphosphate, but had no effect on luteinizing hormone release. The effect of GnRH on inositol phosphates (Ins-P) production was dose-related (ED50 = 1-5 nM), and was blocked by a potent antagonist [D-pGlu,pClPhe,D-Trp]GnRH. Elevation of cytosolic free Ca2+ levels ([Ca2+]i), by ionomycin and A23187 from intracellular or extracellular Ca2+ pools, respectively, had no significant effect on [3H]Ins-P production. GnRH-induced [3H]Ins-P production was not dependent on extracellular Ca2+ and was noticed also after extracellular or intracellular Ca2+ mobilization by A23187 or ionomycin, respectively. The effect of GnRH on [3H]Ins-P accumulation was not affected by prior treatment of the cells with the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate or with islet-activating protein pertussis toxin. These results indicate that GnRH stimulates a rapid phosphodiester hydrolysis of polyphosphoinositides. The stimulatory effect is not mediated via an islet-activating protein-substrate, is not dependent on elevation of [Ca2+]i, neither is it negatively regulated by 12-O-tetradecanoylphorbol-13-acetate which activates Ca2+/phospholipid-dependent protein C kinase. The results are consistent with the hypothesis that GnRH-induced phosphoinositide turnover is responsible for Ca2+ mobilization followed by gonadotropin release.  相似文献   

20.
The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号