首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the binding of the fluorescent probes 8-anilinonaphthalene-1-sulfonate (ANS) and ethidium ions to whole and disruped mitochondria and submitochondrial particles suggest that the inner mitochondrial membrane is freely permeable to the two probes. Equations relating the binding of permeant probes to the electro-chemical balance across the membrane of vesicular systems are derived and these equations used to analyze Scatchard plots of the binding of the two probes to energized and nonenergized mitochondria and EDTA particles.  相似文献   

2.
1. The interaction of electron-transporting particles from heavy mitochondria of ox heart with several fluorescent probes was examined. 2. 1-Anilinonaphthalene-8-sulphonate and 2-(N-methylanilino)naphthalene-6-sulphonate both show an energy-dependent response. 3. Energy transfer between the electron-transporting particles and the dyes and the kinetics of the dye-particle interaction were studied in order to locate the binding regions in the membrane. 4. The energy-dependent probe responses were shown to be a result of changes in the quantum yield of fluorescence of the bound dyes together with increased binding of the dyes to the energized membrane. 5. Fluorescence lifetime measurements were also used to observe changes on energization. 6. A new type of probe was found in pyrene-3-sulphonate, which may be regarded as a ;volume indicator' for the internal membrane binding region, since it shows a concentration-dependent excimer fluorescence. 7. By comparing the responses of all these dyes when energized particles are uncoupled, a membrane transition with a time-constant of 2-3s is inferred.  相似文献   

3.
Lipophilic ions are widely used as the probe for estimation of the membrane potential. It is suggested that the correction of the probe binding to the membrane and/or intracellular constituents is a problem to be solved in order to evaluate the membrane potential accurately. Previously, we proposed a method for the correction of the probe binding (Demura, M., Kamo, N. and Kobatake, Y. (1985) Biochim. Biophys. Acta 820, 207-215). In this paper, the method was applied to the determination of the membrane potential of intact mitochondria. The probes used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0-4) and tetraphenylphosphonium (TPP+). Binding of these probes to de-energized mitochondria followed the Langmuir isotherm. However, values of parameters determined at high (50-800 microM) and low (under 20 microM) probe concentrations were different, suggesting the existence at least two, high- and low-affinity, binding sites. With extrapolation to the 'state of no binding', the membrane potential of intact mitochondria was estimated to be -147 mV (interior-negative) when they were energized by 5 mM succinate in medium consisting of 125 mM KCl, 10 mM MgCl2, 5 mM phosphate, 0.4 mM EDTA and 50 mM Tris-HCl (pH 7.5) at 25 degrees C. Parameters appearing in the equation for the correction of probe binding were determined with the use of this value of the membrane potential. The validity of the equation and the value of the parameters were revealed by the fact that after the correction, all probes used gave approximately the same value under the same conditions. We expanded the method so as to include the langmuir adsorption isotherm. When the modified equation is used, the estimated membrane potentials were less dependent on a probe concentration less than 10 microM.  相似文献   

4.
Lipophilic ions are widely used as the probe for estimation of the membrane potential. It is suggested that the correction of the probe binding to the membrane and / or intracellular constituents is a problem to be solved in order to evaluate the membrane potential accurately. Previously, we proposed a method for the correction of the probe binding (Demura, M., Kamo, N. and Kobatake, Y. (1985) Biochim. Biophys. Acta 820, 207–215). In this paper, the method was applied to the determination of the membrane potential of intact mitochondria. The probes used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0−4) and tetraphenylphosphonium (TPP+). Binding of these probes to de-energized mitochondria followed the Langmuir isotherm. However, values of parameters determined at high (50–800 μM) and low (under 20 μM) probe concentrations were different, suggesting the existence at least two, high- and low-affinity, binding sites. With extrapolation to the ‘state of no binding’, the membrane potential of intact mitochondria was estimated to be −147 mV (interior-negative) when they were energized by 5 mM succinate in medium consisting of 125 mM KCl, 10 mM MgCl2, 5 mM phosphate, 0.4 mM EDTA and 50 mM Tris-HCl (pH 7.5) at 25°C. Parameters appearing in the equation for the correction of probe binding were determined with the use of this value of the membrane potential. The validity of the equation and the value of the parameters were revealed by the fact that after the correction, all probes used gave approximately the same value under the same conditions. We expanded the method so as to include the Langmuir adsorption isotherm. When the modified equation is used, the estimated membrane potentials were less dependent on a probe concentration less than 10 μM.  相似文献   

5.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane. The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 . F0) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211-222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

6.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane.The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 · Fo) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211–222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

7.
The interaction of the cationic spin probe 4-(N,N-dimethyl-N-dodecyl)-ammonium-2,2,6,6-tetramethyl-piperidine-1-oxyl (Cat12) with intact mitochondria and submitochondrial particles was investigated as a function of salt concentration, pH and energization by ATP. In the presence of 1 mM Fe(CN)-36, which inhibits the probe reduction by the mitochondria, the probe signal is stable and shows both bound and free forms. The partition of the probe into mitochondrial membranes is decreased by various salts depending on the cation valency, indicating that the membrane is negatively charged (-10 to -15 mV at pH 7.0). The surface potential increases with pH from -3 mV at pH 5.0 to -18 mV at pH 8.0. Energization of intact mitochondria by ATP reduces the magnitude of both bound and free signals by more than 50%; the signal of the bound form slowly disappears on further incubation. The ATP effect is inhibited and also reversed by either oligomycin or CCCP. Similar effects of ATP were observed in mitoplasts but not in submitochondrial particles. In submitochondrial particles ATP has no effect on the probe signal or binding. These results suggest that the formation of membrane potential in mitochondria induces uptake and internal binding of the probe which results in broadening of the EPR signal of the internally bound probe. It is concluded that Cat12 is not a suitable probe for measurement of surface potential in energized mitochondria.  相似文献   

8.
Binding of 8-anilino-1-naphthalene sulphonate (ANS) to rat liver mitochondria and submitochondrial inside-out particles was measured under energized and de-energized conditions. In mitochondria, energization/de-energization changed the binding capacity for ANS extrapolated for its infinitely high concentration, whereas the apparent Kd value remained unchanged. In submitochondrial particles apparent Kd was changed but the extrapolated maximum binding was not altered. These results are compatible with theoretical considerations assuming a free permeability of mitochondrial membranes to ANS and its distribution according to the transmembrane potential. The spin-labelled cationic amphiphile, 4-(dodecyl dimethyl ammonium)-1-oxyl-2,2,6,6-tetramethyl piperidine bromide (CAT12), was trapped by de-energized mitochondria in such a way that about half of the bound probe became inaccessible to reduction by externally added ascorbate. This inaccessible fraction was increased by energization. This indicates that this cationic probe can penetrate through the inner mitochondrial membrane. De-energization produced a parallel shift of the Lineweaver-Burk plots for the oxidation of external ferrocytochrome c by mitoplasts and of succinate by submitochondrial particles. A similar shift was obtained by a partial inhibition of succinate oxidation by antimycin A. Thus, the observed changes of the kinetics of the two membrane-bound enzyme systems on de-energization can be interpreted as reflecting changes of the control points of mitochondrial respiration rather than changes of the surface potential. It is concluded that neither the fluorescent probe ANS, the spin-labelled amphiphilic cation CAT12, nor the kinetics of some respiratory enzyme systems provide a sufficient proof for changes of the surface potential of the inner mitochondrial membrane upon energization.  相似文献   

9.
V. Mikeš  V. Dadák 《BBA》1983,723(2):231-239
The interaction of rat liver and bovine heart mitochondria with a series of fluorescent, cationic berberine derivatives varying in the length of alkyl chain has been investigated. An increase in the hydrophobicity of the derivative was accompanied by a larger value of the partition coefficient and by binding to a more hydrophobic region of the inner mitochondrial membrane. It was found that berberines could be used as sensitive indicators of processes which take place on the outer surface of the mitochondrial membrane; the greatest (15-fold) increase in fluorescence was obtained with 13-methylberberine in the energized state of mitochondria. The fluorescence increase was due to the increase in fluorescence quantum yield although a small increase in the amount of bound derivative could also be detected upon energization. The fluorescence was linearly dependent on the magnitude of the membrane potential. In parallel with an observed fluorescence enhancement a considerable decrease in rotational mobility was found. We suggest that berberines move in the inner membrane according to the polarity of the membrane potential; consequently, deeper immersion in the less polar region in the energized state brings about a larger fluorescence increase. More hydrophobic derivatives inhibited NAD-linked respiration in rat liver mitochondria but exerted no effect on succinate oxidation up to 10 μM concentration.  相似文献   

10.
V F Antonov  A S Ivanov 《Biofizika》1975,20(4):642-645
In energized rat liver mitochondria the simultaneous H+, K+ and C1- transport was studied by corresponding ion selective electrodes. It was shown that the C1- transport induced by valinomycin, by valinomycin plus carbonyclyanide m-chlorophenylhydrazone was governed by the membrane potential. It is suggested that observed in energized mitochondria the C1- electrophoresis may servt as an indicator of membrane potential changes.  相似文献   

11.
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280 degrees K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethyoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a "mixed valency" (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport. It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position. The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

12.
A modified version of fluorescence correlation spectroscopy (FCS) closely related to the photon counting histogram (PCH) method, which is used in the case of a mixture of molecules with similar diffusion coefficients, was applied here for analyzing the binding of the potential-sensitive dye tetramethylrhodamine ethyl ester, TMRE, to isolated mitochondria both in energized and deenergized states. Fluorescence time traces of suspensions of TMRE-doped mitochondria representing sequences of peaks of different intensity appeared to be similar to those of fluorescent beads and TMRE-doped latex particles. The experimental data were obtained under stirring conditions which increased the number of events by about three orders of magnitude thus substantially enhancing the resolution of the method. The statistics of the brightness of identical fluorescent particles reflecting their random walk through the confocal volume was described by a simple analytical equation which enabled us to perform the peak intensity analysis (PIA) of TMRE-doped mitochondria. The validity of PIA was tested with fluorescent beads of different sizes and TMRE-doped latex particles. Mitochondrial energization in the presence of TMRE led to the increase in the number and the intensity of the peaks in fluorescence time traces, the PIA of which allowed us to determine mitochondrial membrane potential and additionally a number of mitochondrial particles per ml of the suspension. The value of the membrane potential on a single mitochondrion was estimated to be about 180 mV in agreement with the data related to mitochondrial suspensions. Importantly, the PIA method required less than 1 microgram of mitochondrial protein per measurement.  相似文献   

13.
Dynamic phase microscopy was used to measure the refractivity of a single mitochondrion. Our previous studies showed that application of an electric potential to artificial and natural mitochondrial membranes sharply increases their refractivity. Under the conditions of proton pump activity, the refractivity of a single mitochondrion is 2 to 4 times higher than an average refractivity of deenergized mitochondria. This study demonstrates that the membrane potential of energized mitochondria varies depending on environmental conditions and is controlled by the mitochondrial osmoregulation system. The refractivity of energized mitochondria, i.e., the difference between the refraction indexes of a single mitochondrion and the medium, is 0.02 ± 0.01, i.e., several times lower than that of the energized mitochondria whose membranes bear an electric charge. Earlier it was shown that refractivity of model multilayer systems formed from purified natural lecithin depends linearly on the electric field strength. These data point to a relationship between the refractivity of a single mitochondrion and the membrane potential generated during operation of the proton pump. Under normal conditions (250 mOsm), the mitochondrion behaves as a dynamic system oscillating on a minute scale between two functional states with different values of the refractivity index and different membrane potentials. The transition time is 10–30 s; the lifetime of both states is several minutes. The histograms reflecting the distribution of refractivities of single energized mitochondria within a population (n = 20–30) revealed the presence of two independent peaks (fractions II and III) with average refractivity values of 0.05 ± 0.01 and 0.09 ± 0.01, respectively; these fractions correspond to two long-lived states of mitochondria. However, under hypotonic conditions (120 mOsm), only one (“static”) state was identified, in which oscillations were absent and the refractivity of the overall mitochondrial population does not exceed 0.05 ± 0.01 (fraction II). Studies on mitoplast showed that values of refractivity are related to the inner mitochondrial membrane. It is inferred from these data that there exist two discrete states of mitochondria. Analysis of low-amplitude fluctuations of the refractivity of single mitochondria revealed the presence of frequency components at 1–3 Hz, presumably generated in response to non-uniform functioning of mitochondrial proton pumps. It is suggested that frequency components at 1.8-2.6 Hz are more characteristic of the ATPase pump, while the 1–1.3 Hz frequencies predominate during the functioning of respiratory proton pumps.  相似文献   

14.
Spermine, a polyamine present in the mammalian cells at rather high concentration, has, among other actions, a remarkable stabilizing effect on mitochondria, functions which have generally been attributed to the capability of this and other polyamines to bind to membrane anionic sites. In the present paper evidence is provided that at physiological concentrations spermine may also be transported into rat liver mitochondrial matrix space, provided that mitochondria are energized and inorganic phosphate is simultaneously transported. The close dependence of spermine transport is also demonstrated by the concurrent efflux of spermine and inorganic phosphate when mitochondria preloaded with the two ionic species are deenergized either with uncouplers or respiratory chain inhibitors. Furthermore, Mersalyl, the known inhibitor of phosphate transport, prevents both spermine uptake and release. Mg2+ inhibits the transport of spermine conceivably by competing for the some binding sites on the mitochondrial membrane. The physiological significance of these results is discussed.  相似文献   

15.
Membrane and cytoplasmic changes were observed after in vitro fertilization of hamster oocytes by examining freeze-fracture replicas. The density of intramembranous particles on areas of membrane between microvilli increased following fertilization. Although the intramembranous particle density of microvilli is higher than that on the intermicrovillar membrane of unfertilized eggs, it did not change significantly after fertilization. Cytoplasmic changes in the Golgi complex and mitochondria upon fertilization indicate a change in cellular activity. Lipid binding probes were applied to the oocyte membranes in order to study the distribution of specific lipids before and after fertilization. Probes included the B-hydroxy-steroid complexing molecules, filipin and tomatin, and an anionic lipid binding antibiotic, polymyxin B. Both tomatin and filipin complex with steroids in the P and E faces of the plasma membrane (including the polar bodies), cortical granules and vesicles deeper in the cytoplasm, and the Golgi complex, leaving mitochondria, pronuclei, endoplasmic reticulum, and the majority of vesicles unlabeled. Polymyxin B binding is dependent on its application before or after fixation or in association with EGTA. With its application we detected both minor membrane perturbations of wrinkles and particle redistributions and major perturbations of vesicle fusions, the formation of blebs, and the loss of membrane morphology. Neither the distribution nor apparent quantity of these probes changed overall following fertilization, but this impression does not include specific sites of sperm-egg fusion.  相似文献   

16.
Summary The analysis of anisotropic inhibitor-induced phenomena in mitochondria revealed that two kinds of negative charges are generated near surface of the C-side of mitochondrial inner membranes in the energized state, on the redox complexes (I, III & IV) and F0, respectively, and that positively charged anisotropic inhibitors (AI+) inhibit energy transduction in oxidative phosphorylation by binding to these negative charges. Thus, AI+ have two different inhibition sites in oxidative phosphorylation, the redox complexes and F0. The membrane components generating the negative charges in energized mitochondria were examined by the technique of photoaffinity labeling with monoazide ethidium, which is an AI+. Results showed that monoazide ethidium specifically binds to two kinds of hydrophobic protein (of 8 K and 13 K daltons) of mitochondria energized with succinate, and these proteins were named chargerin I and II, respectively. Chargerin I and II, which may be components of the redox complexes and F0, seem to generate the negative charges described above, and these may be essential for H+-pumps in the redox complexes and F1 · F0. AI+ seem to inhibit ATP synthesis by binding to negatively charged sites of chargerin I and II.Based on these findings and the salient results on energy-transducing membranes obtained recently in other laboratories, a conformational model of H+-pumps and ATP synthesis in mitochondria is proposed, which is also applicable to ATP synthesis in other energy-transducing membranes and ATP-linked active transport of ions.  相似文献   

17.
The energized configuration of the cristal membrane of beef heart mitochondria can be maintained only as long as oxygen is available for electron transfer. When the oxygen supply is exhausted, the membrane undergoes a transition to the nonenergized configuration. Since the exhaustion of the available oxygen supply is complete in 5–20 sec, it is impossible to apply the method of sedimenting the mitochondria prior to fixation for studying the energized configurational states of mitochondria. The direct addition of glutaraldehyde followed by osmium tetroxide to the mitochondrial suspension is the most effective way of freezing the configurational state of the cristal membrane. Fixation with glutaraldehyde appears to be complete within 1–2 sec even at 0°. Osmium tetroxide alone can also freeze the energized configuration by fixation but the concentration of the fixative is critical. The problem of capturing the configurational state applies not only to energized transitions (nonenergized to energized) but also to nonenergized transitions (orthodox to aggregated). The freezing by fixation of the cristal membrane in the aggregated configuration is best accomplished by the sequential use of glutaraldehyde and osmium tetroxide. When the levels of glutaraldehyde and osmium tetroxide are respectively too low or too high, the mitochondrion will undergo a transition from the aggregated to the orthodox configuration before fixation is complete. Light-scattering studies provide an independent method for monitoring configurational changes in mitochondria; these light-scattering measurements confirm that the conditions for fixation which lead to stabilization of the energized state as judged by electron microscopy, also show maintenance of configuration as judged by absence of light-scattering changes after the fixatives are introduced. Reagents used in negative staining will induce the geometrical form of the energized configuration of the mitochondrion even under nonenergizing conditions. These reagents are thus unsuitable for use in studies of configurational transitions in mitochondria.  相似文献   

18.
Cyclophilin D was recently shown to bind to and decrease the activity of F(0)F(1)-ATP synthase in submitochondrial particles and permeabilized mitochondria [Giorgio V et al. (2009) J Biol Chem, 284, 33982-33988]. Cyclophilin D binding decreased both ATP synthesis and hydrolysis rates. In the present study, we reaffirm these findings by demonstrating that, in intact mouse liver mitochondria energized by ATP, the absence of cyclophilin D or the presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria, an increase in F(0)F(1)-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident in the form of slightly increased respiration rates during arsenolysis. However, the modulation of F(0)F(1)-ATP synthase by cyclophilin D did not increase the adenine nucleotide translocase (ANT)-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of an effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ~ 2.2-fold lower flux control coefficient of the F(0)F(1)-ATP synthase than that of ANT, as deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that an ~ 30% change in F(0)F(1)-ATP synthase activity in fully energized or fully de-energized mitochondria affects the ADP-ATP exchange rate mediated by the ANT in the range 1.38-1.7%. We conclude that, in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or the inhibition of its binding to F(0)F(1)-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels.  相似文献   

19.
Intramitochondrially synthesized Co-deuteroporphyrin is released to the incubation medium at a rate inversely correlated to the energy state of the mitochondria; i.e. the rate of efflux increases when substrate is depleted, respiration inhibited or the mitochondria are uncoupled. The efflux of Co-deuteroporphyrin from mitochondria remains low as long as the residual membrane potential is above one-third that of maximally energized mitochondria. Globin enhances the efflux of Co-deuteroporphyrin not only from mitochondria depleted of substrates [Husby & Romslo (1980) Biochem. J. 188, 459-465], but also from maximally energized mitochondria. The results provide further evidence for a co-operative mechanism between the mitochondria and their surroundings for the mobilization of metalloporphyrin from mitochondria.  相似文献   

20.
The precursor of cytochrome b2 (a cytoplasmically-synthesized mitochondrial protein) binds to isolated mitochondria or to isolated outer membrane vesicles. Binding does not require an energized inner membrane, is diminished by trypsin treatment of the membranes and is not observed with the partially processed (intermediate) form of the cytochrome b2 precursor or with non-mitochondrial proteins. Upon energization of the mitochondria, the bound precursor is imported and cleaved to the mature form. Similar results were obtained with the precursor of citrate synthase. This receptor-like binding activity was present in isolated outer, but not inner membrane. It was solubilized from outer membrane with non-ionic detergent and reconstituted into liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号