首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
豌豆种子发育过程中DNA和RNA的变化   总被引:2,自引:2,他引:0  
实验结果表明:豌豆种子发育过程中单粒鲜重、DNA和RNA含量都随开花后日数增加而增加。其中豌豆开花第21天,RNA含量达最高峰,拖尾现象消失而趋于单一带区,DNA的迁移率也降到最低,从而确定出豌豆开花后第21天是基因转录活动降低的转折点,为种子蛋白质基因工程研究提供参考。  相似文献   

2.
以绿岭和绿早2个早实核桃品种为试材,对开花50 d后不同发育时期核仁的脂肪含量与3种相关的酶活性动态进行研究,分析不同发育时期影响核桃脂肪含量的关键酶.结果表明: 2个品种的核仁脂肪积累动态一致,核仁在开花后50 d开始固化,花后60~90 d核仁脂肪含量迅速增加,花后90~120 d增长幅度变缓,花后120~130 d脂肪含量停止增长.利用Logistic模型对核桃脂肪积累进程进行拟合(P<0.01),绿岭脂肪积累盛期为开花后57.8~85.8 d,绿早为开花后67.4~92.1 d.乙酰辅酶A羧化酶(ACCase)、6-磷酸葡萄糖脱氢酶(G6PDH)和丙酮酸激酶(PK)活性均在花后50~100 d呈上升趋势,随后酶活性呈下降趋势.核仁脂肪含量与ACCase活性呈显著正相关;脂肪积累速率与PK活性呈显著正相关;不同发育时期脂肪含量与酶活性的相关性不同.花后50~100 d是核桃核仁脂肪合成旺盛的时期,此时加强田间栽培管理可以提高脂肪含量.在核桃脂肪合成前期G6PDH是影响脂肪含量的主要酶,PK活性影响丙酮酸形成,从而间接影响脂肪的合成.ACCase活性影响了最终的脂肪含量,并在脂肪合成的各个时期均起到重要的调节作用,是影响核桃脂肪合成的关键酶.  相似文献   

3.
A globulin protein comparatively rich in sulphur amino acids has been isolated from the seeds of pigeon pea. This protein termed γ-protein has a sedimentation coefficients of 7S and a molecular weight of about 90,000. Antibodies were raised against pure γ-protein. Using rocket immunoelectrophoresis it was observed that γ-protein was synthesised in the developing seeds, 21 days after flowering  相似文献   

4.
不同含水量的豌豆种子萌发时物质动员及代谢研究   总被引:5,自引:1,他引:4  
不同含水量的豌豆种子在饱和水蒸气中保持7d过程中,含水量低于萌动临界含水量时,子叶中贮藏蛋白质和淀粉的动员不能启动;含水量达到或超过萌动临界含水量,贮藏物质的动员被启动,豌启种子萌动后,子叶中蛋白质和淀动员程度与种子含水量呈正相关,前3d物质动员的程度比后4d强烈得多,因此,含水量是豌豆种子萌发时物质动员的启动因子和调节因子,同时,豌豆种子的含水量直接影响胚轴的生长状况。  相似文献   

5.
Soluble sugars, starch, soluble nitrogen and protein nitrogen were studied in developing seeds of 3 cultivars of pigeonpea. When expressed on a per seed basis soluble sugars increased up to 35 days after flowering and then declined slightly. Rapid starch accumulation was observed between 14 and 28 days after flowering. The levels of soluble nitrogen and protein nitrogen underwent rapid changes during the same period. Amino-acid composition of seed protein was also studied at different stages of maturation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of salt-soluble proteins revealed that seed storage globulins are formed after 14 days of flowering and do not change much during later stages of maturation.  相似文献   

6.
为系统掌握常春二乔玉兰春夏季开花物候节律,探讨其与营养物质的关系,本研究以6年生常春二乔玉兰为试验材料,观测其年生长发育节律、春夏季开花物候特性以及茎段营养物质的含量变化。结果表明:(1)每年12月始至翌年2月下旬为常春二乔玉兰休眠期。2月下旬花芽膨大生长,并于3月开始春季开花,花期持续约20 d。4月进行营养生长,5月完成花芽分化。5月底部分花芽膨大并于6月开始开花,夏季花期持续约20 d。7~9月为未膨大花芽的发育滞缓期。此外,少量夏季开放的花的基部侧芽再次分化形成花芽。10~12月随着落叶的开始,树体逐渐进入休眠期。(2)常春二乔玉兰营养生长后分化的花芽能够花开两季。春季开花为先花后叶,开花率为100%,开花同步率较高,雌、雄蕊发育正常,为可育花。夏季开花为花叶同放,开花率约为30%,且开花同步率较低,开放的花内雌、雄蕊发育异常,为不育花。(3)春季开花期间可溶性糖和可溶性蛋白呈下降趋势,淀粉含量于开花后期下降;夏季开花期间可溶性糖和淀粉总体呈先降后升趋势,而可溶性蛋白总体呈下降趋势。综上所述,常春二乔玉兰春、夏季开花期内开花模式存在一定差异,其显著节律特征与营养物质含量变化有关,推测低水平的可溶性糖及高水平的淀粉和可溶性蛋白有利于春季开花的启动,而低水平的可溶性蛋白及高水平的可溶性糖和淀粉含量则有利于夏季开花的实现。  相似文献   

7.
以长期定位试验为基础,对不同耕作措施下春小麦和豌豆叶水势的变化特征及其与环境因子的关系进行了研究,并对叶片相对含水量和水分饱和亏的变化规律进行了探讨.结果表明:豌豆在整个生育期内的叶水势都明显高于春小麦,它们在不同生育期的日变化趋势大致相同,均为清晨最高,然后随着时间的推移而下降,在持续一段低谷后逐渐回升.春小麦各处理的叶水势在拔节和抽穗期相对较高,孕穗和开花期次之,灌浆期最低;豌豆各处理的叶水势在现蕾期达到最大值,分枝和开花期次之,结荚鼓粒期最低.春小麦各处理的叶片相对含水量在抽穗期最高,拔节和开花期次之,灌浆期最低,水分饱和亏的变化正好相反;豌豆各处理的叶片相对含水量随生育进程呈下降趋势,水分饱和亏的变化也与之相反.春小麦和豌豆各处理的叶水势与土壤含水量、气温、太阳辐射、大气相对湿度、大气水势均有显著的相关关系.通径分析表明,对春小麦和豌豆叶水势日变化影响最强的气象因子分别为大气水势和大气温度.与传统耕作相比,免耕、免耕秸秆覆盖、传统耕作秸秆还田3种保护性耕作措施可不同程度地提高作物叶水势和叶片相对含水量,其中免耕秸秆覆盖的优势最明显.  相似文献   

8.
Intact cotyledons were taken from pea seeds at various stages during seed development and pulse-labeled with 14C-amino acids. Salt-soluble proteins then were extracted and fractionated on Na dodecyl sulfate-polyacrylamide gels. Storage proteins in these extracts were identified by their binding to immunoaffinity columns. The labeling studies showed that the synthesis of storage protein polypeptides accounts for a major part of total protein synthesis of developing cotyledons between 10 and 22 days after flowering. The distribution of the incorporated radioactivity between individual storage protein polypeptides varied with stage of development. For example, the synthesis of the 50 kilodalton complex of vicilin subunits dominated the early stages of protein accumulation but was a negligible proportion of the total incorporation in the later stages. On the other hand, the 75 kilodalton vicilin subunit was synthesized throughout this entire period. The major small subunit of legumin (20 kilodaltons) was not detected by either Coomassie blue staining or by 2-hour labeling during this period. It was found to arise during the desiccation phase of seed maturation from a long-lived precursor with a relative electrophoretic mobility equivalent to 19 kilodaltons.  相似文献   

9.
10.
Cell development and starch granule formation in seeds of three pea (Pisum sativum L.) genotypes, R/R Rb/Rb, r/r Rb/Rb, and R/R rb/rb, affecting cotyledon starch were compared. Cotyledon cells at 10 days after flowering were highly vacuolated and contained small protein bodies in the vacuoles and small oval starch granules in the cytoplasm in all three genotypes. Gradients of cell development from the center to the periphery of the cotyledon and toward the cotyledon-hypocotyl axis persisted through the cell enlargement, reserve synthesis, and into the maturation stages of cotyledon development. By 14 days after flowering, many small vacuoles lined with protein deposits had been formed. Vacuoles were only observed in peripheral and basal cells by 18 days after flowering. Starch granules were oval and birefringent in all three genotypes at 10 days. Starch granules in R/R Rb/Rb and R/R rb/rb cotyledons expanded regularly remaining nearly oval and birefringent throughout development. In contrast, starch granules from r/r Rb/Rb cotyledons began to fragment by 14 days after flowering. This process began as a single fissure, followed by a second fissure usually at or near right angles. Finally, because of the fragmentation, the granules appeared compound, and only a portion of the granule was birefringent. All genotypes contained nearly equal volumes of liquid endosperm and embryo at 10 days after flowering. In addition, a layer of parenchyma tissue (ovular and/or endospermic) inside the seed coat was observed. Although, thin walled and poorly defined cytologically, the parenchyma cells contained large numbers of starch granules. These granules were a mixture of simple and compound types in all genotypes. By 18 days after flowering, the parenchyma tissue was reduced to a small layer of cell walls and all starch granules had been mobilized.  相似文献   

11.
At 20 days after flowering (DAF), the 7S α' and α subunits began to accumulate. At 25 DAF, the 7Sβ, l1SA and llSB subunits appeared. Five days later, the 11SA-4 subunit was present During the period of 25–55DAF, the storage protein content continued to increase. From 55 to 63 DAF, there was a decrease in the synthetic rate of the storage proteins. Comparing these results with the two paths of protein body formation reported previously, we draw the conclusion that the protein bodies developed from vacuoles contained not only the 7S bm also the lis proteins in soybean cotyledon cells.  相似文献   

12.
依托陇中旱农区长期的保护性耕作定位试验,对不同耕作方式下春小麦和豌豆根系空间分布特征及作物产量进行研究,以探索耕作措施影响作物产量的机制.结果表明: 随着生育期的推进,春小麦和豌豆的总根长、根表面积呈先增后减的趋势,开花期达到最大;春小麦根系苗期以0~10 cm最多,花期、成熟期10~30 cm最多;而豌豆根系苗期和成熟期均以0~10 cm最多,花期10~30 cm最多.免耕秸秆覆盖和免耕覆膜增加了根长和根表面积,春小麦和豌豆各生育时期的根长较传统耕作增加了35.9%~92.6%,根表面积增加了43.2%~162.4%.免耕秸秆覆盖和免耕覆膜优化了春小麦和豌豆根系分布,与传统耕作相比,增加了春小麦和豌豆苗期0~10 cm土层根长和根表面积分布比例,花期和成熟期深层次根系分布也显著增加,免耕秸秆覆盖在开花期30~80 cm土层根长和根表面积的分布比例分别比传统耕作提高了3.3%和9.7%.春小麦各生育期的总根长、根表面积与产量呈显著正相关,豌豆各生育期的总根长与豌豆产量呈极显著正相关.免耕秸秆覆盖和免耕覆膜较传统耕作春小麦和豌豆产量增加23.4%~38.7%,水分利用效率提高了13.7%~28.5%.在陇中旱农区,免耕秸秆覆盖和免耕覆膜可以增加作物根长和根表面积,优化了根系在土壤中的空间分布,增强作物根层吸收能力,从而提高作物产量和水分高效利用.  相似文献   

13.
Field experiments with Glycine max (L.) Merr. cv. Ludou 11 and Ludou 4 were conducted to evaluate changes in photosynthetic rate, antioxidative enzyme activity, soluble protein, chlorophyll (Chl) and carotenoid (Car) contents in relation to leaf senescence during seed filling period. Photosynthetic rate, soluble protein content, catalase and peroxidase activities were the highest at 25 days after flowering (DAF). Chl a, Chl b and Car contents reached the maximum at 15 DAF and rapidly decreased after 33 DAF.  相似文献   

14.
棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系   总被引:7,自引:0,他引:7  
棉纤维细胞于开花当天从棉胚珠表皮上发生,随即开始伸长生长,星S型生长曲线。棉纤维细胞的可溶性蛋白、过氧化物酶活性和IAA氧化酶活性同伸长生长的关系不大;而离子型结合的细胞壁蛋白质含量、过氧化物酶活性和IAA氧化酶活性同棉纤维细胞的伸长生长关系较大,表现在棉纤维细胞快速伸长期活性较低,而在伸长生长停止时出现活性高峰,同棉纤维细胞的伸长生长有负相关现象。  相似文献   

15.
以黄淮麦区优良品种矮抗58、周麦18、豫麦49、百农418为研究对象,采用田间试验与实验室分析相结合的方法,对不同小麦品种在不同生育时期的抗倒伏性状进行研究.结果表明: 茎秆机械强度在开花期至花后20 d处于较高水平,在花后30 d明显下降;倒伏指数在开花期最小,花后30 d最大,其余两个时期处于中间水平.相关分析表明,开花期机械强度与重心高度呈显著负相关,与纤维素、木质素含量呈显著正相关,倒伏指数与节长、株高、重心高度呈显著正相关,与纤维素、木质素含量呈显著负相关;花后10 d和花后20 d机械强度与节长、株高、重心高度呈显著负相关,与茎粗、纤维素、半纤维素、木质素含量呈显著正相关,倒伏指数这段时期正好与之相反;花后30 d机械强度与株高、重心高度呈显著负相关,倒伏指数与株高、重心高度呈显著正相关,与木质素含量呈显著负相关.因此,明确各个生育时期与抗倒性相关的茎秆特性,可为黄淮麦区高产抗倒性品种的选育提供依据.  相似文献   

16.
光皮木瓜果实发育期间主要成分含量的变化   总被引:1,自引:0,他引:1  
对光皮木瓜果实发育期间主要成分含量的变化进行了分析.结果显示:(1)光皮木瓜果实发育期间,可溶性固形物含量总体呈上升趋势,花后151 d达到最大值14.8%;干物质、粗纤维和多酚含量的变化均呈单峰型,分别于花后95、67和95 d达到峰值(26.49%、14.96%、81.843 1 mg/gDW),并分别于花后165、179和179 d降至最低值(18.3%、6.47%、42.014 6 mg/gDW);黄酮、多糖、齐墩果酸含量均呈逐渐增加趋势,在果实发育后期略有下降,其中多糖和齐墩果酸含量均于花后137 d达到最大值,分别为110.431 2 mg/gDW和10.312 1 mg/gDW,黄酮含量在花后151 d达到最大值3.201 1 mg/gDW.(2)多酚的单果产量在果实发育过程中的变化趋势与多酚含量一致,于花后95 d多酚单果产量达到最高值(5.448 6 g);齐墩果酸、多糖及黄酮的单果产量在果实发育期间逐渐增加,花后165 d多糖的单果产量达到最高值(8.508 1 g),花后179 d黄酮和齐墩果酸的单果产量均达到最高值(0.261 2 g和0.747 4 g).研究表明,花后137 d(8月25日)至151 d(9月8日)木瓜果实青绿,齐墩果酸、多糖、黄酮含量最高,为加工木瓜饮片等的最佳采收期;花后165 d(9月22日)至179 d(10月6日)时,木瓜果实基本转黄,其中齐墩果酸、多糖、黄酮的单果产量最高,且多酚和粗纤维含量最低,是药用有效成分提取和加工果酒、果脯、果醋等木瓜食品的最佳采收期.  相似文献   

17.
Protein synthesis and accumulation in growing sunflower (Helianthus annuus L.cv.Airelle) seeds are studied. The salt soluble fraction, globulin, is the main soluble protein component. The earlier stages of seed development (10 days after flowering) are characterized by high Mr polypeptides (74, 58 and 44 kDa). Later stages mainly show nature globulin polypeptides. Thus, protein synthesis in seed occurs at a specific period of seed development which follows a period of fast cell divisions (0–14 days after flowering). Protein bodies are isolated and their protein composition analyzed. Globulin subunits are the main polypeptides of protein bodies soluble fraction. Mature globulin is only stored in protein bodies.   相似文献   

18.
We propose herein a novel single seed descent protocol that has application across a broad phenotypic range of pea genotypes. Manipulation of key in vivo growing conditions, including light, photoperiod and temperature, combined with precocious in vitro germination of the embryo at full physiological maturity substantially shortened the pea lifecycle. We define full embryo physiological maturity as the earliest point in seed development when precocious in vitro germination and robust seedling growth can be reliably achieved without supply of exogenous hormones. Under our optimised conditions for accelerated plant growth, embryo physiological maturity was attained at c. 18 days after pollination, when seed moisture content was below 60?% and sucrose level under 100 mg g?1 DW. No delay penalty in terms of time to flowering and plant development was caused by the culture of immature seeds 18 days after pollination compared to the used of mature ones. Determining the role embryo maturity plays in the fitness of the germinated plant has facilitated the truncation of the lifecycle across pea genotypes. The accelerated single seed descent system proposed within this research will benefit complex genetic studies via the rapid development of recombinant inbred lines (RIL) and multi-parental advanced generation intercrosses (MAGIC) populations.  相似文献   

19.
Enzymes of starch metabolism in the developing rice grain   总被引:7,自引:5,他引:2       下载免费PDF全文
The levels of starch, soluble sugars, protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and starch synthetase —were assayed in dehulled developing rice grains (Oryzasativa L., variety IR8). Phosphorylase, Q-enzyme, and R-enzyme had peak activities 10 days after flowering, whereas α- and β-amylases had maximal activities 14 days after flowering. Starch synthetase bound to the starch granule increased in activity up to 21 days after flowering. These enzymes (except the starch synthetases) were also detected by polyacrylamide gel electrophoresis. Their activity in grains at the midmilky stage (8-10 days after flowering) was determined in five pairs of lines with low and high amylose content from different crosses. The samples had similar levels of amylases, phosphorylase, R-enzyme, and Q-enzyme. The samples consistently differed in their levels of starch synthetase bound to the starch granule, which was proportional to amylose content. Granule-bound starch synthetase may be responsible for the integrity of amylose in the developing starch granule.  相似文献   

20.
Using cDNA representational difference analysis (cDNA RDA), a cDNA whose expression was induced by gibberellins was cloned in our lab from G2 pea[1]. Sequence analysis showed that it shares high homology with acetohydroxy acid isomeroreductase (also known as ketol-acid reductoisomerase, EC1.1.1.86) in branched-chain amino acids biosynthetic pathway. Previous experiments confirmed that when expressed in E. coli cells, it was able to catalyze the reduction of AHB (2-aceto-2-hydroxybutyrat…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号