首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of diazocyclopentadiene on tomato ripening   总被引:2,自引:0,他引:2  
Diazocyclopentadiene (DACP) in the presence of fluorescent light delayed ripening of tomato fruits treated at the mature green (no visible red) stage. At 25 °C, ripening was delayed 10 days if DACP [185 µl/1 (gas)] was added as a single treatment and longer if DACP was added intermittently at 5-day intervals. The addition of 1000 µl/1 ethylene following DACP and light treatment did not hasten ripening. Little ripening delay was noted for fruit + DACP held in darkness. Tomatoes covered with aluminum foil so as to exclude light but not light-activated DACP, showed ripening inhibition. Apparently, the light-activated product from DACP is stable long enough to diffuse into fruit held in darkness. After an initial inhibition, ethylene production was greatly increased in tomatoes treated with DACP. Tomatoes with or without DACP treatment were held either in air or 5% O2/95% N2 for 12 days then treated with ethylene. Treatment with 5% O2 alone delayed ripening when compared to air alone, however, both groups reached 80% red color by 18 days. DACP treated fruit, whether held in air or 5% O2, still were green after 18 days and only approached 80% red color after approximately 27 days. Thus, 5% oxygen did not appear to slow the reversal of DACP inhibition of ripening.  相似文献   

2.
3-Methylcyclopropene (3-MCP) binds to the ethylene receptor and blocks it for several days, but concentrationswise is less effective than 1-methylcyclopropene (1-MCP). In diverse ethylene-responsive systems, including ripening of mature-green bananas (Musa sapientum L.), inhibition of growth in etiolated pea (Pisum sativum L.) seedlings, abscission of orange (Citrus sinensis L.) leaf explants and mung bean (Vigna radiata L.) leaves, and wilting of campanula (Campanula carpatica) and kalanchoe (Kalanchoë blossfeldiana) florets, full inhibition of the ethylene response required higher concentrations of 3-MCP. Depending on the experimental system, the effective concentration of 3-MCP was from 5 to 10 times higher than that required for 1-MCP.  相似文献   

3.
Diazocyclopentadiene (DACP), an inhibitor of ethylene action, was used to investigate the role of ethylene receptor(s) in regulating ethylene biosynthesis and respiration in strawberry fruit. DACP stimulated ethylene production of fruit at all stages of maturity. This stimulation was mainly due to an increase in ACC content in the tissue without significantly changing ACC oxidase activity. DACP did not induce any change in respiration in fruit at various stages of maturity except the early green stage (green I). We also investigated the possible interaction of DACP and IAA in ethylene production. Results indicated that all treatments increased ethylene production compared to the control although the absolute ethylene production differed in the order IAA plus DACP > only DACP > only IAA > control. IAA stimulated ethylene production without change of ACC oxidase activity at 1 day after treatment in strawberry fruit at pink stage. Results suggest that ethylene biosynthesis in nonclimacteric strawberry fruit at various stages of maturity may be regulated by ethylene receptor(s) with inhibition of ethylene production. DACP may release this inhibitory effect, and resulting in increasing ethylene production. Results also indicated that respiration may not be regulated by an ethylene receptor in strawberry fruit at most stages of maturity. DACP and IAA showed interaction in regulation of ethylene production which was caused by an increase in ACC content, not ACC oxidase activity.  相似文献   

4.
5.
Diazocyclopentadiene (DACP), a competitive ethylene action inhibitor binds irreversibly to the ethylene receptor to reduce tissue responses to ethylene. Tomato fruit (Lycopersicon esculentum Mill cv lsquo;Rondellorsquo;) were treated with DACP at the mature green stage. Ethylene biosynthesis and respiration rate were depressed. Color changes from green to red were delayed. Compared to the control, ACC content increased and ACC oxidase activity in vivo decreased in DACP-treated fruit. Thus, decrease of ethylene production caused by DACP treatment was due to the reduction of ACC oxidase activity. The decline in ripening subsequently recovered after DACP treatment. Results from the Northern analysis for gene expression of ACC synthase and ACC oxidase, showed that expression of both genes declined in DACP-treated fruit, and then recovered. Therefore the recovery of ethylene production was due to the recovery in gene expression and activity of ACC oxidase. We conclude that the effects of DACP on ethylene biosynthesis are on expression of ACC synthase and ACC oxidase genes, and/or regulation of ACC oxidase activity.  相似文献   

6.
7.
Abscission: ethylene and light control   总被引:1,自引:0,他引:1       下载免费PDF全文
The role of ethylene in light control of leaf abscission im mung bean, Vigna radiata (L.) Wilczek cv Jumbo, cuttings was examined. While red light inhibits and far-red light promotes loss of break strength in abscission zones as compared with dark controls, changes in the rate of abscission could not be associated with changes in the rate of ethylene production. Reducing ethylene synthesis in tissue with aminoethoxyvinylglycine did not alter the effects of red or far-red light on abscission. Far-red light appeared to increase and red light appeared to decrease tissue sensitivity to ethylene.  相似文献   

8.
9.
A number of organic molecules that appear to block the ethylene receptor have been discovered recently. For example, on irradiation with visible light, diazocyclopentadiene (DACP), gives rise to some potent but as yet unidentified inhibitor compounds. Some synthetic cyclopropenes have been shown to bind to the ethylene receptor and prevent the physiological action of ethylene for extended periods. Cyclopropene (CP). 1-methylcyclopropene (1-MCP) and 3,3-dimethylcyclopropene (3,3-DMCP) have been shown to prevent ethylene effects in a number of plants. As low a concentration as 0.5 nl l−1 of 1-MCP is sufficient to protect carnation ( Dianthus caryophyllus ) flowers for several days against ethylene, and 0.7 nl l−1 1-MCP or CP will prevent the ripening of banana ( Musa sapientum ) for 12 days at 24°C. Some plant organs require higher concentrations of these inhibitors. Complete inhibition of ethylene effects in pea seedlings requires treatment with 40 n1 1−1 of 1-MCP. These novel inhibitors appear to be suitable for many commercial applications including extending the vase life of cut flowers and the display life of potted plants. Since 1-MCP apparently is non-toxic at concentrations that are active, it may in future be available for regulating the ripening of fruits and preventing the deleterious effects of ethylene in vegetables.  相似文献   

10.
Exposure of mung bean (Vigna radiata [L.] Wilczek cv Jumbo) cuttings to low level red light inhibits dark-induced leaf abscission. A 12-hour daily light requirement for maximum inhibition of abscission was equally effective as a continuous red light treatment or shorter light-dark cycles. Transfer of cuttings from dark to light stopped the abscission process at the time of transfer. The available evidence suggests a light receptor located in the leaves with an abscission inhibitor translocated from lighted leaf to the abscission zone.  相似文献   

11.
Growth of the mung bean (Vigna radiata L.) epicotyl was retarded by white (400–700 nm) light, especially by monochromatic red (660 nm) light. Growth promoting effects of brassinolide were observed under those light conditions that retarded growth, but were not evident in the dark or under far-red light. Brassinolide seems to act to overcome the inhibitory affects of lights.  相似文献   

12.
At a concentration of 17 µmol·L–1, paclobutrazol (PP), a triazole plant growth retardant, effectively reduced the elongation and increased the thickness of hypocotyls in 6-day-old Phaseolus vulgaris L. cv. Juliska seedlings, both in the light and in the dark. PP treatment did not increase the cell number in transverse sections of hypocotyls. The diameter of hypocotyls was uniform from the zone of intensive elongation along the whole hypocotyl in etiolated plants, but those grown in the light exhibited an additional lateral expansion at the base. Ethylene evolution was not reduced by PP in etiolated hypocotyls, and did not differ significantly in the elongating apical and fully grown basal zones. PP reduced the ethylene release by the growing zones in green hypocotyls, but not in the basal parts, which resulted in an increasing ethylene gradient towards the hypocotyl base. The level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was much higher in retardant-treated hypocotyls than in the controls, which was due in part to the reduced malonylation. The swelling of the hypocotyl bases could be eliminated by inhibitors of ethylene biosynthesis or action, or could be induced by 10 µmol·L–1ACC in control plants in the light. None of these treatments had a significant effect on the lateral expansion of hypocotyls in etiolated seedlings. PP treatment induced a similar effect to that of white light in etiolated seedlings, and amplified the effect of light in green plants with respect to the ACC distribution, and consequently, the ethylene production in the hypocotyls of 6-day-old bean seedlings. It can be concluded that the lateral expansion of hypocotyl bases in PP-treated green plants is controlled by ethylene.  相似文献   

13.
实验结果表明:照光时绿豆叶片分离线粒体通过细胞色素氧化酶途径的NADH氧化部分受阻,电子转向交替途径。不产生能量,不受能荷控制的NADH氧化途径有利于绿色细胞线粒体在光合作用时执行其提供碳架的功能。看来绿色细胞线粒体本身具有对光的敏感性,在照光时调节呼吸途径以适应其功能的转换。呼吸途径的转换机制目前还不清楚。绿豆种子线粒体与叶片线粒体不同,没有上述的这种对光的反应。  相似文献   

14.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol], a triazole growth retardant, increased the 1-aminocyclopropane-1-carboxylic acid (ACC) level and resulted in reduced ethylene production, estimated as ethylene release in a closed system or by vacuum-extraction, in the primary leaves of Phaseolus vulgaris L. cv. Juliska seedlings exposed to light. At the light/dark transition, a definite enhancement of the endogenous ethylene level was observed by vacuum-extraction of primary leaves of treated plants and the ethylene deficiency of retardant-treated leaves ceased. The concentration of ACC after the light/dark transition followed the pattern for ethylene, and the increase in ACC content was paralleled by a decrease in malonyl-ACC.
It is concluded that the internal level of ethylene is not necessarily lower in the primary leaves of paclobutrazol-treated bean plants, but under special environmental conditions in vivo it may reach that of the control.  相似文献   

15.
16.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants. To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment, indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity, the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression, whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue.  相似文献   

17.
Responses of banana fruit to treatment with 1-methylcyclopropene   总被引:12,自引:0,他引:12  
Experiments were conducted to determine levels of 1-methylcyclopropene (1-MCP) exposure needed to prevent ethylene-stimulated banana fruit ripening, characterise responses of ethylene-treated fruit to subsequent treatment with 1-MCP, and to test effects of subsequent ethylene treatment on 1-MCP-treated fruit softening. Fruit softening was measured at 20°C and 90% relative humidity. One hour exposure at 20°C to 1000 nl 1-MCP/l essentially eliminated ethylene-stimulated ripening effects. Exposure for 12 h at 20°C to just 50 nl 1-MCP/l was similarly effective. Fruit ripening initiated by ethylene treatment could also be delayed with subsequent 1-MCP treatment. However, 1-MCP treatment only slowed down ripening of ethylene-treated fruit when applied at 1 day after ethylene and was ineffective when applied 3 or 5 days after ethylene treatment. The ripening response of fruit treated with 1-MCP and subsequently treated with ethylene varied with interval time between 1-MCP and ethylene treatments. As time increased, the response of 1-MCP-treated fruit to ethylene was enhanced. Responses to 0.1, 1, 10 or 100 µl ethylene/l concentrations were similar. Enzyme kinetic analysis applied to 1-MCP effects on ethylene-induced softening of banana fruit suggested that 1-MCP inhibition is by noncompetitive antagonism of ethylene binding.  相似文献   

18.
The compounds 2,5-norbornadiene, cyclopentadiene, furan, pyrrole, thiophene, 1-methylpyrrole, dicyclopentadiene, methylcyclopentadiene (dimer), and cycloheptatriene have been tested for competition with ethylene for binding and for biological activity using banana fruit. In addition, acetylene, allene, and 1,3-butadiene were tested. All of these compounds competed with ethylene for binding in vitro in a Triton X-100 extract of mung bean sprouts and in vivo in tobacco leaves. Only acetylene, allene, and furan are active in giving an ethylene response in banana. the others all suppress the ethylene response. Only acetylene and allene stimulate ethylene synthesis. Most of the compounds diffuse away from the binding site upon exposure to air.R.J. Reynolds Research Apprentice  相似文献   

19.
The binding constants of various olefins were determined with a Triton X-100 extract of mung bean sprouts. The olefins tested included compounds that have been reported to induce an ethylene response in vivo as well as olefins reported to block the ethylene response. Both types of compounds were bound by the Triton X-100 extract, and the binding constants in vitro were usually considerably lower than those obtained in in vivo studies as measured by gas phase concentrations. Increased solubility due to Triton X-100 solution appears to be partly responsible. The in vitro binding order of compounds reported to induce an ethylene response was similar to their order of in vivo activity. Also, the compounds which gave an anti-ethylene response in vivo bound to the extract in approximately the same order as their in vivo effectiveness. These results suggest that binding of olefins is not the only factor necessary for an ethylene response. Although binding is necessary for activity, another factor must be involved after binding, and this may be -acceptance.  相似文献   

20.
Light-grown mung bean (Phaseolus aureus Roxb.) cuttings were treated with buffered and nonbuffered solutions of Ethephon, indole butyric acid (IBA), and the combination of both. Ethephon treatment resulted in increased tissue ethylene levels with increasing solution pH, but had no effect on rooting. IBA treatment had no effect on tissue ethylene levels, but strongly promoted rooting. Combinations of Ethephon and IBA had no effect on rooting of mung bean cuttings beyond that obtained by IBA alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号