首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Various molecular and cellular alterations of the cyclic adenosine monophosphate (cAMP) pathway have been observed in endocrine tumors. Since protein kinase A (PKA) is a central key component of the cAMP pathway, studies of the alterations of PKA subunits in endocrine tumors reveal new aspects of the mechanisms of cAMP pathway alterations in human diseases. So far, most alterations have been observed for the regulatory subunits, mainly PRKAR1A and to a lower extent, PRKAR2B. One of the best examples of such alteration today is the multiple neoplasia syndrome Carney complex (CNC). The most common endocrine gland manifestations of CNC are pituitary GH-secreting adenomas, thyroid tumors, testicular tumors, and ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) are observed in about two-third of CNC patients, and also in patients with isolated PPNAD. PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic endocrine tumors. More than 120 different PRKAR1A mutations have been found today. Most of them lead to an unstable mutant mRNA, which will be degraded by nonsense mediated mRNA decay. In vitro and in vivo functional studies are in progress to understand the mechanisms of endocrine tumor development due to PKA regulatory subunits inactivation. PRKAR1A mutations stimulate in most models PKA activity, mimicking in some way cAMP pathway constitutive activation. Cross-talks with other signaling pathways summarized in this review have been described and might participate in endocrine tumorigenesis.  相似文献   

2.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.  相似文献   

3.
The Src homology 2 domain-containing inositol 5′-phosphatase 1 (SHIP1) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to phophatidylinositol 3,4-bisphosphate in hematopoietic cells to regulate multiple cell signaling pathways. SHIP1 can be phosphorylated by the cyclic AMP-dependent protein kinase (PKA), resulting in an increase in SHIP1 activity (Zhang, J., Walk, S. F., Ravichandran, K. S., and Garrison, J. C. (2009) J. Biol. Chem. 284, 20070–20078). Using a combination of approaches, we identified the serine residue regulating SHIP1 activity. After mass spectrometric identification of 17 serine and threonine residues on SHIP1 as being phosphorylated by PKA in vitro, studies with truncation mutants of SHIP1 narrowed the phosphorylation site to the catalytic region between residues 400 and 866. Of the two candidate phosphorylation sites located in this region (Ser440 and Ser774), only mutation of Ser440 to Ala abolished the ability of PKA to phosphorylate the purified, catalytic domain of SHIP1 (residues 401–866). Mutation of Ser440 to Ala in full-length SHIP1 abrogated the ability of PKA to increase the activity of SHIP1 in mammalian cells. Using flow cytometry, we found that the PKA activator, Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) blunted the phosphorylation of Akt downstream of B cell antigen receptor engagement in SHIP1-null DT40 B lymphocytes expressing native mouse SHIP1. The inhibitory effect of Sp-cAMPS was absent in cells expressing the S440A mutant of SHIP1. These results suggest that activation of SHIP1 by PKA via phosphorylation on Ser440 is an important regulatory event in hematopoietic cells.  相似文献   

4.
5.
We studied 11 new kindreds with primary pigmented nodular adrenocortical disease (PPNAD) or Carney complex (CNC) and found that 82% of the kindreds had PRKAR1A gene defects (including seven novel inactivating mutations), most of which led to nonsense mRNA and, thus, were not expressed in patients' cells. However, a previously undescribed base substitution in intron 6 (exon 6 IVS +1G-->T) led to exon 6 skipping and an expressed shorter PRKAR1A protein. The mutant protein was present in patients' leukocytes and tumors, and in vitro studies indicated that the mutant PRKAR1A activated cAMP-dependent protein kinase A (PKA) signaling at the nuclear level. This is the first demonstration of an inactivating PRKAR1A mutation being expressed at the protein level and leading to stimulation of the PKA pathway in CNC patients. Along with the lack of allelic loss at the PRKAR1A locus in most of the tumors from this kindred, these data suggest that alteration of PRKAR1A function (not only its complete loss) is sufficient for augmenting PKA activity leading to tumorigenesis in tissues affected by CNC.  相似文献   

6.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3′,5′-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function.  相似文献   

7.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   

8.
Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.  相似文献   

9.
Carney complex (CNC) is a multiple neoplasia syndrome that consists of endocrine (thyroid, pituitary, adrenocortical and gonadal), non-endocrine (myxomas, nevi and other cutaneous pigmented lesions), and neural (schwannomas) tumors. Primary pigmented nodular adrenocortical disease (PPNAD) is the most common endocrine manifestation of CNC and the only inherited form of Cushing syndrome known to date. In the search of genes responsible for CNC, two chromosomal loci were identified; one (17q22-24) harbored the gene encoding the type I-alpha regulatory subunit (RIalpha) of protein kinase A (PKA), PRKAR1A, a critical component of the cAMP signaling pathway. Here we review CNC and the implications of this discovery for the cAMP and/or PKA's involvement in human tumorigenesis.  相似文献   

10.
Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis.  相似文献   

11.
Carney complex (CNC) is a familial multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and cutaneous myxomas, and endocrine tumors. CNC is inherited as an autosomal dominant trait and is transmitted with greater frequency by women vs. men. Nearly two thirds of CNC patients are heterozygous for inactivating mutations in the gene encoding the protein kinase A (PKA) type I alpha regulatory subunit (RI alpha), PRKAR1. We report here that male mice heterozygous for the Prkar1a gene have severely reduced fertility. Sperm from Prkar1a heterozygous mice are morphologically abnormal and reduced in number. Genetic rescue experiments reveal that this phenotype results from elevated PKA catalytic activity in germ cells as early as the pachytene stage of spermatogenesis. Consistent with this defect in the male mutant mice, sperm from CNC patients heterozygous for PRKAR1A mutations were also found to be morphologically aberrant and decreased in number. We conclude that unregulated PKA activity in male meiotic or postmeiotic germ cells leads to structural defects in mature sperm and results in reduced fertility in mice and humans, contributing to the strikingly reduced transmission of PRKAR1A inactivating mutations by male patients with CNC.  相似文献   

12.
Carney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing''s syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 α-regulatory subunit (R1α) of the cAMP–dependent protein kinase (PKA) have been found in 80% of CNC patients with Cushing''s syndrome. To demonstrate the implication of R1α loss in the initiation and development of PPNAD, we generated mice lacking Prkar1a specifically in the adrenal cortex (AdKO). AdKO mice develop pituitary-independent Cushing''s syndrome with increased PKA activity. This leads to autonomous steroidogenic genes expression and deregulated adreno-cortical cells differentiation, increased proliferation and resistance to apoptosis. Unexpectedly, R1α loss results in improper maintenance and centrifugal expansion of cortisol-producing fetal adrenocortical cells with concomitant regression of adult cortex. Our data provide the first in vivo evidence that loss of R1α is sufficient to induce autonomous adrenal hyper-activity and bilateral hyperplasia, both observed in human PPNAD. Furthermore, this model demonstrates that deregulated PKA activity favors the emergence of a new cell population potentially arising from the fetal adrenal, giving new insight into the mechanisms leading to PPNAD.  相似文献   

13.
Acrodysostosis     
Acrodysostosis refers to a group of rare skeletal dysplasias that share in common characteristic clinical and radiological features including brachydactyly, facial dysostosis, and nasal hypoplasia. In the past, the term acrodysostosis has been used to describe patients with heterogeneous phenotypes, including, in some cases, patients that today would be given alternative diagnoses. The recent finding that mutations impairing the cAMP binding to PRKAR1A are associated with "typical" acrodysostosis and hormonal resistance initiates the era where this group of disorders can be categorized on a genetic basis. In this review, we will first discuss the clinical, radiologic, and metabolic features of acrodysostosis, emphasizing evidence that several forms of the disease are likely to exist. Second, we will describe recent results explaining the pathogenesis of acrodysostosis with hormonal resistance (ADOHR). Finally, we will discuss the similarities and differences observed comparing patients with ADOHR and other diseases resulting from defects in the PTHR1 signaling pathway, in particular, pseudohypoparathyroidism type 1a and pseudopseudohypoparathyroidism.  相似文献   

14.
3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods.  相似文献   

15.
16.
Adenosine 3′, 5′-cyclic monophosphate (cAMP) and guanosine 3′, 5′-cyclic monophosphate (cGMP) are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS) on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.  相似文献   

17.
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression.  相似文献   

18.
Artefactual Origins of Cyclic AMP in Higher Plant Tissues   总被引:5,自引:2,他引:3       下载免费PDF全文
A highly sensitive radioimmunoassay has been used to determine the levels of adenosine 3′,5′-cyclic monophosphate (cAMP) in five higher plants (Lactuca sativa, Helianthus annuus, Oryza sativa, Pinus pinaster, Nicotiana tabacum). Particular attention was paid to the three main sources of errors in the characterization of cAMP in plants: presence of interfering substances in plant tissues; possible artefactual formation of cAMP from endogenous ATP during extraction, purification, and assay; and microbial origin of cAMP. In all the tested tissues, the cAMP level was below the detection limit of 0.5 picomole per gram fresh weight, a value much lower than those reported for similar materials of the same species in many previous studies. This result is not in favor of cAMP-dependent regulations in higher plants.  相似文献   

19.
《Cellular signalling》2014,26(11):2446-2459
Acrodysostosis without hormone resistance is a rare skeletal disorder characterized by brachydactyly, nasal hypoplasia, mental retardation and occasionally developmental delay. Recently, loss-of-function mutations in the gene encoding cAMP-hydrolyzing phosphodiesterase-4D (PDE4D) have been reported to cause this rare condition but the pathomechanism has not been fully elucidated. To understand the pathogenetic mechanism of PDE4D mutations, we conducted 3D modeling studies to predict changes in the binding efficacy of cAMP to the catalytic pocket in PDE4D mutants. Our results indicated diminished enzyme activity in the two mutants we analyzed (Gly673Asp and Ile678Thr; based on PDE4D4 residue numbering). Ectopic expression of PDE4D mutants in HEK293 cells demonstrated this reduction in activity, which was identified by increased cAMP levels. However, the cells from an acrodysostosis patient showed low cAMP accumulation, which resulted in a decrease in the phosphorylated cAMP Response Element-Binding Protein (pCREB)/CREB ratio. The reason for this discrepancy was due to a compensatory increase in expression levels of PDE4A and PDE4B isoforms, which accounted for the paradoxical decrease in cAMP levels in the patient cells expressing mutant isoforms with a lowered PDE4D activity. Skeletal radiographs of 10-week-old knockout (KO) rats showed that the distal part of the forelimb was shorter than in wild-type (WT) rats and that all the metacarpals and phalanges were also shorter in KO, as the name acrodysostosis implies. Like the G-protein α-stimulatory subunit and PRKAR1A, PDE4D critically regulates the cAMP signal transduction pathway and influences bone formation in a way that activity-compromising PDE4D mutations can result in skeletal dysplasia. We propose that specific inhibitory PDE4D mutations can lead to the molecular pathology of acrodysostosis without hormone resistance but that the pathological phenotype may well be dependent on an over-compensatory induction of other PDE4 isoforms that can be expected to be targeted to different signaling complexes and exert distinct effects on compartmentalized cAMP signaling.  相似文献   

20.
Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号