首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 stimulates lytic infection and the reactivation of quiescent viral genomes. These roles of ICP0 require its RING finger E3 ubiquitin ligase domain, which induces the degradation of several cellular proteins, including components of promyelocytic leukemia nuclear bodies and centromeres. ICP0 also interacts very strongly with the cellular ubiquitin-specific protease USP7 (also known as HAUSP). We have shown previously that ICP0 induces its own ubiquitination and degradation in a RING finger-dependent manner, and that its interaction with USP7 regulates this process. In the course of these studies we found and report here that ICP0 also targets USP7 for ubiquitination and proteasome-dependent degradation. The reciprocal activities of the two proteins reveal an intriguing situation that poses the question of the balance of the two processes during productive HSV-1 infection. Based on a thorough analysis of the properties of an HSV-1 mutant virus that expresses forms of ICP0 that are unable to bind to USP7, we conclude that USP7-mediated stabilization of ICP0 is dominant over ICP0-induced degradation of USP7 during productive HSV-1 infection. We propose that the biological significance of the ICP0-USP7 interaction may be most pronounced in natural infection situations, in which limited amounts of ICP0 are expressed.  相似文献   

3.
Expression of the herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 in transfected cells reactivates rep gene expression from integrated adeno-associated virus (AAV) type 2 genomes via a mechanism that requires both its RING finger and USP7 interaction domains. In this study, we found that the rep reactivation defect of USP7-binding-negative ICP0 mutants can be overcome by further deletion of sequences in the C-terminal domain of ICP0, indicating that binding of USP7 to ICP0 is not directly required. Unlike the case in transfected cells, only the RING finger domain of ICP0 was essential for rep gene reactivation during HSV-1 infection. However, mutants unable to bind to USP7 activate HSV-1 gene expression and reactivate rep gene expression with reduced efficiencies. These results further elucidate the role of ICP0 as a helper factor for AAV replication and illustrate that care is required when extrapolating from the properties of ICP0 in transfection assays to events occurring during HSV-1 infection.  相似文献   

4.
The viral ubiquitin ligase ICP0 is required for efficient initiation of herpes simplex virus 1 (HSV-1) lytic infection and productive reactivation of viral genomes from latency. ICP0 has been shown to target a number of specific cellular proteins for proteasome-dependent degradation during lytic infection, including the promyelocytic leukemia protein (PML) and its small ubiquitin-like modified (SUMO) isoforms. We have shown previously that ICP0 can catalyze the formation of unanchored polyubiquitin chains and mediate the ubiquitination of specific substrate proteins in vitro in the presence of two E2 ubiquitin-conjugating enzymes, namely, UBE2D1 (UbcH5a) and UBE2E1 (UbcH6), in a RING finger-dependent manner. Using homology modeling in conjunction with site-directed mutagenesis, we identify specific residues required for the interaction between the RING finger domain of ICP0 and UBE2D1, and we report that point mutations at these residues compromise the ability of ICP0 to induce the colocalization of conjugated ubiquitin and the degradation of PML and its SUMO-modified isoforms. Furthermore, we show that RING finger mutants that are unable to interact with UBE2D1 fail not only to complement the plaque-forming defect of an ICP0-null mutant virus but also to mediate the derepression of quiescent HSV-1 genomes in cell culture. These data demonstrate that the ability of ICP0 to interact with cellular E2 ubiquitin-conjugating enzymes is fundamentally important for its biological functions during HSV-1 infection.  相似文献   

5.
Earlier studies reported that ICP0, a key regulatory protein encoded by herpes simplex virus 1 (HSV-1), binds ubiquitin-specific protease 7 (USP7). The fundamental conclusion of these studies is that depletion of USP7 destabilized ICP0, that ICP0 mediated the degradation of USP7, and that amino acid substitutions in ICP0 that abolished binding to USP7 significantly impaired the ability of HSV-1 to replicate. We show here that, indeed, depletion of USP7 leads to reduction of ICP0 and that USP7 is degraded in an ICP0-dependent manner. However, overexpression of USP7 or substitution in ICP0 of a single amino acid to abolish binding to USP7 accelerated the accumulation of viral mRNAs and proteins at early times after infection and had no deleterious effect on virus yields. A clue as to why USP7 is degraded emerged from the observation that, notwithstanding the accelerated expression of viral genes, the plaques formed by the mutant virus were very small, implying a defect in virus transmission from cell to cell.  相似文献   

6.
UBL5 is a widely expressed human protein that is strongly conserved across phylogeny. Orthologs of UBL5 occur in every eukaryotic genome characterized to date. The yeast ortholog of UBL5, HUB1, was reported to be a ubiquitin-like protein modifier important for modulation of protein function. However, unlike ubiquitin and all other ubiquitin-like modifiers, UBL5 and its yeast ortholog HUB1 both contain a C-terminal di-tyrosine motif followed by a single variable residue instead of the characteristic di-glycine found in all other ubiquitin-like modifiers. Here we describe the three-dimensional structure of UBL5 determined by NMR. The overall structure of the protein was found to be very similar to ubiquitin despite the low approximately 25% residue similarity. The signature C-terminal di-tyrosine residues in UBL5 are involved in the final beta sheet of the protein. This is very different to the di-glycine motif found in ubiquitin, which extends beyond the final beta sheet. In addition, we have confirmed an earlier report of an interaction between UBL5 and the cyclin-like kinase, CLK4, which we have determined is specific and does not extend to other cyclin-like kinase family members.  相似文献   

7.
Ubiquitin conjugation and deconjugation provides a powerful signalling system to change the fate of its target enzymes. Ubiquitination levels are organized through a balance between ubiquitinating E1, E2 and E3 enzymes and deubiquitination by DUBs (deubiquitinating enzymes). These enzymes are tightly regulated to control their activity. In the present article, we discuss the different ways in which DUBs of the USP (ubiquitin-specific protease) family are regulated by internal domains with a UBL (ubiquitin-like) fold. The UBL domain in USP14 is important for its localization at the proteasome, which enhances catalysis. In contrast, a UBL domain in USP4 binds to the catalytic domain and competes with ubiquitin binding. In this process, the UBL domain mimics ubiquitin and partially inhibits catalysis. In USP7, there are five consecutive UBL domains, of which the last two affect catalytic activity. Surprisingly, they do not act like ubiquitin and activate catalysis rather than inhibiting it. These C-terminal UBL domains promote a conformational change that allows ubiquitin binding and organizes the catalytic centre. Thus it seems that UBL domains have different functions in different USPs. Other proteins can modulate the roles of UBL domains in USP4 and USP7. On one hand, the inhibition of USP4 can be relieved when the UBL is sequestered by another USP. On the other, the activation of USP7 is increased, when the UBL-activated state is stabilized by allosteric binding of GMP synthetase. Altogether, UBL domains appear to be able to regulate catalytic activity in USPs, but they can use widely different mechanisms of action, in which they may, as in USP4, or may not, as in USP7, use the direct resemblance to ubiquitin.  相似文献   

8.
Herpes simplex virus type 1 immediate-early regulatory protein ICP0 stimulates lytic infection and reactivation from latency, processes that require the ubiquitin E3 ligase activity mediated by the RING finger domain in the N-terminal portion of the protein. ICP0 stimulates the production of polyubiquitin chains by the ubiquitin-conjugating enzymes UbcH5a and UbcH6 in vitro, and in infected and transfected cells it induces the proteasome-dependent degradation of a number of cellular proteins including PML, the major constituent protein of PML nuclear bodies. However, ICP0 binds strongly to the cellular ubiquitin-specific protease USP7, a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors. The region of ICP0 that is required for its interaction with USP7 has been mapped, and mutations in this domain reduce the functionality of ICP0. These findings pose the question: why does ICP0 include domains that are associated with the potentially antagonistic functions of ubiquitin conjugation and deconjugation? Here we report that although neither protein affected the intrinsic activities of the other in vitro, USP7 protected ICP0 from autoubiquitination in vitro, and their interaction can greatly increase the stability of ICP0 in vivo. These results demonstrate that RING finger-mediated autoubiquitination of ICP0 is biologically relevant and can be regulated by interaction with USP7. This principle may extend to a number of cellular RING finger E3 ubiquitin ligase proteins that have analogous interactions with ubiquitin-specific cleavage enzymes.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein ICP0 stimulates the initiation of lytic infection and reactivation from quiescence in human fibroblast cells. These functions correlate with its ability to localize to and disrupt centromeres and specific subnuclear structures known as ND10, PML nuclear bodies, or promyelocytic oncogenic domains. Since the natural site of herpesvirus latency is in neurons, we investigated the status of ND10 and centromeres in uninfected and infected human cells with neuronal characteristics. We found that NT2 cells, a neuronally committed human teratocarcinoma cell line, have abnormal ND10 characterized by low expression of the major ND10 component PML and no detectable expression of another major ND10 antigen, Sp100. In addition, PML is less extensively modified by the ubiquitin-like protein SUMO-1 in NT2 cells compared to fibroblasts. After treatment with retinoic acid, NT2 cells differentiate into neuron-like hNT cells which express very high levels of both PML and Sp100. Infection of both NT2 and hNT cells by HSV-1 was poor compared to human fibroblasts, and after low-multiplicity infection yields of virus were reduced by 2 to 3 orders of magnitude. ICP0-deficient mutants were also disabled in the neuron-related cell lines, and cells quiescently infected with an ICP0-null virus could be established. These results correlated with less-efficient disruption of ND10 and centromeres induced by ICP0 in NT2 and hNT cells. Furthermore, the ability of ICP0 to activate gene expression in transfection assays in NT2 cells was poor compared to Vero cells. These results suggest that a contributory factor in the reduced HSV-1 replication in the neuron-related cells is inefficient ICP0 function; it is possible that this is pertinent to the establishment of latent infection in neurons in vivo.  相似文献   

10.
Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP   总被引:4,自引:0,他引:4  
USP7 or HAUSP is a ubiquitin-specific protease in human cells that regulates the turnover of p53 and is bound by at least two viral proteins, the ICP0 protein of herpes simplex type 1 and the EBNA1 protein of Epstein-Barr virus. We have overexpressed and purified USP7 and shown that the purified protein is monomeric and is active for cleaving both a linear ubiquitin substrate and conjugated ubiquitin on EBNA1. Using partial proteolysis of USP7 coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we showed that USP7 comprises four structural domains; an N-terminal domain known to bind p53, a catalytic domain, and two C-terminal domains. By passing a mixture of USP7 domains over EBNA1 and ICP0 affinity columns, we showed that the N-terminal p53 binding domain was also responsible for the EBNA1 interaction, while the ICP0 binding domain mapped to a C-terminal domain between amino acids 599-801. Tryptophan fluorescence assays showed that an EBNA1 peptide mapping to residues 395-450 was sufficient to bind the USP7 N-terminal domain and did so with a dissociation constant of 0.9-2 microM, whereas p53 peptides spanning the USP7-binding region gave dissociation constants of 9-17 microM in the same assay. In keeping with these relative affinities, gel filtration analyses of the complexes showed that the EBNA1 peptide efficiently competed with the p53 peptide for USP7 binding, suggesting that EBNA1 could affect p53 function in vivo by competing for USP7.  相似文献   

11.
Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0.  相似文献   

12.
Zhu X  Ménard R  Sulea T 《Proteins》2007,69(1):1-7
Ubiquitin-specific proteases (USPs) emerge as key regulators of numerous cellular processes and account for the bulk of human deubiquitinating enzymes (DUBs). Their modular structure, mostly annotated by sequence homology, is believed to determine substrate recognition and subcellular localization. Currently, a large proportion of known human USP sequences are not annotated either structurally or functionally, including regions both within and flanking their catalytic cores. To extend the current understanding of human USPs, we applied consensus fold recognition to the unannotated content of the human USP family. The most interesting discovery was the marked presence of reliably predicted ubiquitin-like (UBL) domains in this family of enzymes. The UBL domain thus appears to be the most frequently occurring domain in the human USP family, after the characteristic catalytic domain. The presence of multiple UBL domains per USP protein, as well as of UBL domains embedded in the USP catalytic core, add to the structural complexity currently recognized for many DUBs. Possible functional roles of the newly uncovered UBL domains of human USPs, including proteasome binding, and substrate and protein target specificities, are discussed.  相似文献   

13.
Herpes simplex virus type 1 (HSV-1) is a common human pathogen causing cold sores and even more serious diseases. It can establish a latent stage in sensory ganglia after primary epithelial infections, and reactivate in response to stress or sunlight. Previous studies have demonstrated that viral immediate-early protein ICP0 plays a key role in regulating the balance between lytic and latent infection. Recently, It has been determined that promyelocytic leukemia (PML) nuclear bodies (NBs), small nuclear sub-structures, contribute to the repression of HSV-1 infection in the absence of functional ICP0. In this review, we discuss the fundamentals of the interaction between ICP0 and PML NBs, suggesting a potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.  相似文献   

14.
15.
16.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 interacts with several cellular proteins and induces the proteasome-dependent degradation of others during infection. In this study we show that ICP0 is required for the proteasome-dependent degradation of the ND10 protein Sp100 and, as with the other target proteins, the ICP0 RING finger domain is essential. Further, comparison of the kinetics and ICP0 domain requirements for the degradation of PMI and Sp100 suggests that a common mechanism is involved. Homologues of ICP0 are encoded by other members of the alphaherpesvirus family. These proteins show strong sequence homology to ICP0 within the RING finger domain but limited similarity elsewhere. Using transfection assays, we have shown that all the ICP0 homologues that we tested have significant effects on the immunofluorescence staining character of at least one of the proteins destabilized by ICP0, and by using a recombinant virus, we found that the equine herpesvirus ICP0 homologue induced the proteasome-dependent degradation of endogenous CENP-C and modified forms of PML and Sp100. However, in contrast to ICP0, the homologue proteins had no effect on the distribution of the ubiquitin-specific protease USP7 within the cell, consistent with their lack of a USP7 binding domain. We also found that ICP0 by itself could induce the abrogation of SUMO-1 conjugation and then the proteasome-dependent degradation of unmodified exogenous PML in transfected cells, thus demonstrating that other HSV-1 proteins are not required. Surprisingly, the ICP0 homologues were unable to cause these effects. Overall, these data suggest that the members of the ICP0 family of proteins may act via a similar mechanism or pathway involving their RING finger domain but that their intrinsic activities and effects on endogenous and exogenous proteins differ in detail.  相似文献   

17.
Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.  相似文献   

18.

Background

The BAG6 protein is a subunit of a heterotrimeric complex that binds a range of membrane and secretory protein precursors localized to the cytosol, enforcing quality control and influencing their subsequent fate.

Methodology and Principal Findings

BAG6 has an N-terminal ubiquitin-like domain, and a C-terminal Bcl-2-associated athanogene domain, separated by a large central proline-rich region. We have used in vitro binding approaches to identify regions of BAG6 important for its interactions with: i) the small-glutamine rich tetratricopeptide repeat-containing protein alpha (SGTA) and ii) two model tail-anchored membrane proteins as a paradigm for its hydrophobic substrates. We show that the BAG6-UBL is essential for binding to SGTA, and find that the UBL of a second subunit of the BAG6-complex, ubiquitin-like protein 4A (UBL4A), competes for SGTA binding. Our data show that this binding is selective, and suggest that SGTA can bind either BAG6, or UBL4A, but not both at the same time. We adapted our in vitro binding assay to study the association of BAG6 with an immobilized tail-anchored protein, Sec61β, and find both the UBL and BAG domains are dispensable for binding this substrate. This conclusion was further supported using a heterologous subcellular localization assay in yeast, where the BAG6-dependent nuclear relocalization of a second tail-anchored protein, GFP-Sed5, also required neither the UBL, nor the BAG domain of BAG6.

Significance

On the basis of these findings, we propose a working model where the large central region of the BAG6 protein provides a binding site for a diverse group of substrates, many of which expose a hydrophobic stretch of polypeptide. This arrangement would enable the BAG6 complex to bring together its substrates with potential effectors including those recruited via its N-terminal UBL. Such effectors may include SGTA, and the resulting assemblies influence the subsequent fate of the hydrophobic BAG6 substrates.  相似文献   

19.
Harper S  Besong TM  Emsley J  Scott DJ  Dreveny I 《Biochemistry》2011,50(37):7995-8004
Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 ? resolution crystal structure of the human USP15 N-terminal domains revealing a 80 ? elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily.  相似文献   

20.
Everett RD 《Journal of virology》2000,74(21):9994-10005
Herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 is a general activator of viral gene expression which stimulates the initiation of lytic infection and reactivation from quiescence and latency. The importance of ICP0 to the biology of HSV-1 infection has stimulated interest in its mode of action. Previous studies have reported its interactions with other viral regulatory molecules, with the translation apparatus, with cyclin D3, and with a ubiquitin-specific protease. It has been demonstrated that ICP0 is able to induce the proteasome-dependent degradation of a number of cellular proteins, including components of centromeres and small nuclear substructures known as ND10 or PML nuclear bodies. ICP0 has a RING finger zinc-binding domain which is essential for its functions. In view of several recent examples of other RING finger proteins which modulate the stability of specific target proteins by acting as components of E3 ubiquitin ligase complexes, this study has explored whether ICP0 might operate via a similar mechanism. Evidence that the foci of accumulated ICP0 in transfected and infected cells contain enhanced levels of conjugated ubiquitin is presented. This effect was dependent on the RING finger region of ICP0, and comparison of the properties of a number of ICP0 mutants revealed an excellent correlation between previously established functions of ICP0 and its ability to induce concentrations of colocalizing conjugated ubiquitin. These results strongly support the hypothesis that a major factor in the mechanism by which ICP0 influences virus infection is its ability to induce the degradation of specific cellular targets by interaction with the ubiquitin-proteasome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号