首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Adeno-associated virus (AAV) integrates site specifically into the AAVS1 locus on human chromosome 19. Although recruitment of the AAV nonstructural protein Rep78/68 to the Rep binding site (RBS) on AAVS1 is thought to be an essential step, the mechanism of the site-specific integration, particularly, how the site of integration is determined, remains largely unknown. Here we describe the identification and characterization of a new cellular regulator of AAV site-specific integration. TAR RNA loop binding protein 185 (TRP-185), previously reported to associate with human immunodeficiency virus type 1 TAR RNA, binds to AAVS1 DNA. Our data suggest that TRP-185 suppresses AAV integration at the AAVS1 RBS and enhances AAV integration into a region downstream of the RBS. TRP-185 bound to Rep68 directly, changing the Rep68 DNA binding property and stimulating Rep68 helicase activity. We present a model in which TRP-185 changes the specificity of the AAV integration site from the RBS to a downstream region by acting as a molecular chaperone that promotes Rep68 complex formation competent for 3'-->5' DNA helicase activity.  相似文献   

2.
We have developed a system for site-specific DNA integration in human cells, mediated by the adeno-associated virus (AAV) Rep proteins. In its normal lysogenic cycle, AAV integrates at a site on human chromosome 19 termed AAVS1. We describe a rapid PCR assay for the detection of integration events at AAVS1 in whole populations of cells. Using this assay, we determined that the AAV Rep proteins, delivered in cis or trans, are required for integration at AAVS1. Only the large forms of the Rep protein, Rep78 and Rep68, promoted site-specific integration. The AAV inverted terminal repeats, present in cis, were not essential for integration at AAVS1, but in cells containing Rep, they increased the efficiency of integration. In the presence of the Rep proteins, the integration of a plasmid containing AAV inverted terminal repeats occurred at high frequency, such that clones containing the plasmid could be isolated without selection. In two of the five clones analyzed by fluorescence in situ hybridization, the plasmid DNA was integrated at AAVS1. In most of the clones, at least one copy of the entire plasmid was integrated in a tandem array. Detailed analysis of the integrated plasmid structure in one clone suggested a complex mechanism producing rearrangements of the flanking genomic DNA, similar to those observed with wild-type AAV.  相似文献   

3.
4.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

5.
6.
The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.  相似文献   

7.
Adeno-associated virus type 2 (AAV2) preferentially integrates its genome into the AAVS1 locus on human chromosome 19. Preferential integration requires the AAV2 Rep68 or Rep78 protein (Rep68/78), a Rep68/78 binding site (RBS), and a nicking site within AAVS1 and may also require an RBS within the virus genome. To obtain further information that might help to elucidate the mechanism and preferred substrate configurations of preferential integration, we amplified junctions between AAV2 DNA and AAVS1 from AAV2-infected HeLaJW cells and cells with defective Artemis or xeroderma pigmentosum group A genes. We sequenced 61 distinct junctions. The integration junction sequences show the three classical types of nonhomologous-end-joining joints: microhomology at junctions (57%), insertion of sequences that are not normally contiguous with either the AAV2 or the AAVS1 sequences at the junction (31%), and direct joining (11%). These junctions were spread over 750 bases and were all downstream of the Rep68/78 nicking site within AAVS1. Two-thirds of the junctions map to 350 bases of AAVS1 that are rich in polypyrimidine tracts on the nicked strand. The majority of AAV2 breakpoints were within the inverted terminal repeat (ITR) sequences, which contain RBSs. We never detected a complete ITR at a junction. Residual ITRs at junctions never contained more than one RBS, suggesting that the hairpin form, rather than the linear ITR, is the more frequent integration substrate. Our data are consistent with a model in which a cellular protein other than Artemis cleaves AAV2 hairpins to produce free ends for integration.  相似文献   

8.
Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.  相似文献   

9.
The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trs nicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif.  相似文献   

10.
BACKGROUND: There is a risk of insertional mutagenesis when techniques that facilitate random integration of exogenous DNA into the human genome are used for gene therapy. Wild-type adeno-associated virus (AAV) integrates preferentially into a specific site on human chromosome 19 (AAVS1). This is mediated by the interaction of the viral Rep68/78 proteins with Rep-binding elements in the AAV genome and AAVS1. This specificity is often lost when AAV is used as a gene therapy vector due to removal of the sequences coding for Rep. METHODS: Messenger RNA coding for the Rep68/78 proteins was prepared in vitro and co-transfected with a 21 kb DNA plasmid containing the P5 integration efficiency element (P5IEE) from AAV. Single cells were seeded in plates to establish clonal cell lines that were subsequently analysed by dual colour fluorescent in situ hybridisation (FISH) to determine whether site-specific plasmid integration had occurred on chromosome 19. RESULTS: The co-transfection of plasmid DNA with Rep68/78 mRNA gave a 2.5-fold increase in DNA integration when compared to transfection of cells with plasmid DNA alone. Rep68/78 mRNA expression facilitated site-specific plasmid integration to chromosome 19 in 30% (14/44) of all analysed integration sites, while no targeted integration events were observed following transfection of cells with plasmid DNA alone. CONCLUSIONS: These results demonstrate that transient expression of Rep protein using transfected mRNA facilitates site-specific integration of plasmid DNA. This approach allows expression of Rep for only a short time, and may circumvent the toxicity and chromosome instability associated with long-term expression of Rep.  相似文献   

11.
It is of great interest for gene therapy to develop vectors that drive the insertion of a therapeutic gene into a chosen specific site on the cellular genome. Adeno-associated virus (AAV) is unique among mammalian viruses in that it integrates into a distinct region of human chromosome 19 (integration site AAVS1). The inverted terminal repeats (ITRs) flanking the AAV genome and the AAV-encoded nonstructural proteins Rep78 and/or Rep68 are the only viral elements necessary and sufficient for site-specific integration. However, it is also known that unrestrained Rep activity may cause nonspecific genomic rearrangements at AAVS1 and/or have detrimental effects on cell physiology. In this paper we describe the generation of a ligand-dependent form of Rep, obtained by fusing a C-terminally deleted Rep68 with a truncated form of the hormone binding domain of the human progesterone receptor, which does not bind progesterone but binds only its synthetic antagonist RU486. The activity of this chimeric protein, named Rep1-491/P, is highly dependent on RU486 in various assays: in particular, it triggers site-specific integration at AAVS1 of an ITR-flanked cassette in a ligand-dependent manner, as efficiently as wild-type Rep68 but without generating unwanted genomic rearrangement at AAVS1.  相似文献   

12.
13.
The adeno-associated virus type 2 (AAV-2) Rep78 and Rep68 proteins are required for replication of the virus as well as its site-specific integration into a unique site, called AAVS1, of human chromosome 19. Rep78 and Rep68 initiate replication by binding to a Rep binding site (RBS) contained in the AAV-2 inverted terminal repeats (ITRs) and then specifically nicking at a nearby site called the terminal resolution site (trs). Similarly, Rep78 and Rep68 are postulated to trigger the integration process by binding and nicking RBS and trs homologues present in AAVS1. However, Rep78 and Rep68 cleave in vitro AAVS1 duplex-linear substrates much less efficiently than hairpinned ITRs. In this study, we show that the AAV-2 Rep68 endonuclease activity is affected by the topology of the substrates in that it efficiently cleaves in vitro in a site- and strand-specific manner the AAVS1 trs only if this sequence is in a supercoiled (SC) conformation. DNA sequence mutagenesis in the context of SC templates allowed us to elucidate for the first time the AAVS1 trs sequence and position requirements for Rep68-mediated cleavage. Interestingly, Rep68 did not cleave SC templates containing RBS from other sites of the human genome. These findings have intriguing implications for AAV-2 site-specific integration in vivo.  相似文献   

14.
Adeno-associated virus (AAV) is a non-pathogenic virus and the only known eukaryotic virus capable of targeting human chromosome 19 for integration at a well-characterized AAVS1 site. Its site-specific integration is mediated by Rep68 and Rep78, viral proteins that bind to both the viral genome and AAVS1 site on ch19 through a specific Rep-binding element (RBE) located in both the viral genome and AAVS1. There are three RBEs in the AAV genome: two identical ones in both inverted terminal repeats (ITR) and another one in a recently discovered region termed the P5 integration efficiency element (P5IEE) that encompasses the viral P5 promoter. In order to identify the viral cis-acting sequence essential for Rep-mediated integration, we tested a series of constructs containing various lengths of P5IEE and compared the two RBEs from ITR (RBE(itr)) and P5IEE (RBE(p5)) in terms of their efficiency in Rep-dependent integration. Methods employed included a colony-forming assay, a PCR-based assay and Southern blotting analysis. We found that 16bp of the RBE cis-element was sufficient for mediating Rep-dependent site-specific integration. Furthermore, RBE(itr) was both more effective and specific than the RBE(p5) in Rep-dependent integration at the AAVS1 site. These findings added new information on the mechanism of Rep-dependent AAV genome insertion at the AAVS1 site and may be helpful in developing new high efficiency vectors for site-specific transgene integration.  相似文献   

15.
The Rep68 and Rep78 proteins (Rep68/78) of adeno-associated virus type 2 (AAV) are critical for AAV replication and site-specific integration. They bind specifically to the AAV inverted terminal repeats (ITRs) and possess ATPase, helicase, and strand-specific/site-specific endonuclease activities. In the present study, we further characterized the AAV Rep68/78 helicase, ATPase, and endonuclease activities by using a maltose binding protein-Rep68 fusion (MBP-Rep68Delta) produced in Escherichia coli cells and Rep78 produced in vitro in a rabbit reticulocyte lysate system. We found that the minimal length of single-stranded DNA capable of stimulating the ATPase activity of MBP-Rep68Delta is 100 to 200 bases. The degree of stimulation correlated positively with the length of single-stranded DNA added to the reaction mixture. We then determined the ATP concentration needed for optimal MBP-Rep68Delta helicase activity and showed that the helicase is active over a wide range of ATP concentrations. We determined the directionality of MBP-Rep68Delta helicase activity and found that it appears to move in a 3' to 5' direction, which is consistent with a model in which AAV Rep68/78 participates in AAV DNA replication by unwinding DNA ahead of a cellular DNA polymerase. In this report, we also demonstrate that single-stranded DNA is capable of inhibiting the MBP-Rep68Delta or Rep78 endonuclease activity greater than 10-fold. In addition, we show that removal of the secondary Rep68/78 binding site, which is found only in the hairpin form of the AAV ITR, causes a three- to eightfold reduction in the ability of the ITR to be used as a substrate for the Rep78 or MBP-Rep68Delta endonuclease activity. This suggests that contact between Rep68/78 and this secondary element may play an important role in the Rep-mediated endonuclease activity.  相似文献   

16.
The human adeno-associated virus (AAV) has generated much enthusiasm as a transfer vector for human gene therapy. Although clinical gene therapy trials have been initiated using AAV vectors, much remains to be learned regarding the basic mechanisms of virus replication, gene expression, and virion assembly. AAV encodes four nonstructural, or replication (Rep), proteins. The Rep78 and Rep68 proteins regulate viral DNA replication, chromosomal integration, and gene expression. The Rep52 and Rep40 proteins mediate virus assembly. To better understand Rep protein function, we have expressed the Rep40 protein in Escherichia coli and purified it to near homogeneity. Like the other Rep proteins, Rep40 possesses helicase and ATPase activity. ATP is the best substrate, and Mg2+ is the most efficient divalent metal ion for helicase activity. A Lys to His mutation in the purine nucleotide-binding site results in a protein that inhibits helicase activity in a dominant negative manner. Rep40 unwinds double-stranded DNA containing a 3' single-stranded end, or blunt end, unlike the Rep68 and Rep52 enzymes, which have a strict requirement for DNA duplexes containing a 3' single-stranded end. Values for KATP in the ATPase assay are 1.1 +/- 0.2 mM and 1.2 +/- 0.2 mM in the absence and presence, respectively, of single-stranded DNA. Values for Vmax are 220 +/- 10 and 1,500 +/- 90 nmol/min/mg in the absence and presence, respectively, of single-stranded DNA. These studies provide the first enzymatic characterization of the AAV Rep40 protein and elucidate important functional differences between the AAV helicases.  相似文献   

17.
18.
The unique ability of adeno-associated virus type 2 (AAV) to site-specifically integrate its genome into a defined sequence on human chromosome 19 (AAVS1) makes it of particular interest for use in targeted gene delivery. The objective underlying this study is to provide evidence for the feasibility of retargeting site-specific integration into selected loci within the human genome. Current models postulate that AAV DNA integration is initiated through the interactions of the products of a single viral open reading frame, REP, with sequences present in AAVS1 that resemble the minimal origin for AAV DNA replication. Here, we present a cell-free system designed to dissect the Rep functions required to target site-specific integration using functional chimeric Rep proteins derived from AAV Rep78 and Rep1 of the closely related goose parvovirus. We show that amino-terminal domain exchange efficiently redirects the specificity of Rep to the minimal origin of DNA replication. Furthermore, we establish that the amino-terminal 208 amino acids of Rep78/68 constitute a catalytic domain of Rep sufficient to mediate site-specific endonuclease activity.  相似文献   

19.
Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.  相似文献   

20.
Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号