首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F A Barr  N Nakamura    G Warren 《The EMBO journal》1998,17(12):3258-3268
The nature of the complex containing GRASP65, a membrane protein involved in establishing the stacked structure of the Golgi apparatus, and GM130, a putative Golgi matrix protein and vesicle docking receptor, was investigated. Gel filtration revealed that GRASP65 and GM130 interact in detergent extracts of Golgi membranes under both interphase and mitotic conditions, and that this complex can bind to the vesicle docking protein p115. Using in vitro translation and site-directed mutagenesis in conjunction with immunoprecipitation, the binding site for GRASP65 on GM130 was mapped to the sequence xxNDxxxIMVI-COOH at the C-terminus of GM130, a region known to be required for its localization to the Golgi apparatus. The same approach was used to show that the binding site for GM130 on GRASP65 maps to amino acids 189-201, a region conserved in the mammalian and yeast proteins and reminiscent of PDZ domains. Using green fluorescent protein (GFP)-tagged reporter constructs, it was shown that one essential function of the interaction between GRASP65 and GM130 is in the correct targeting of the two proteins to the Golgi apparatus.  相似文献   

2.
Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.  相似文献   

3.
The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.  相似文献   

4.
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.  相似文献   

5.
During apoptosis, the Golgi complex becomes fragmented and key proteins (e.g., GRASP65 and p115) are targets for caspase cleavage. GM130, an integral membrane protein, contributes to the maintenance of Golgi structure and facilitates membrane fusion with secretory vesicles. We show that GM130 levels decrease during Fas-induced apoptosis but not during staurosporine-induced apoptosis while in both models p115 levels remain unaffected. We conclude that GM130 is rapidly diminished during Fas-mediated apoptosis associated with Golgi fragmentation in contrast to previous studies which have suggested that loss of GM130 during apoptosis is a late event.  相似文献   

6.
GRASP65 (Golgi reassembly and stacking protein of 65 KDa) is a cis-Golgi protein with roles in Golgi structure, membrane trafficking and cell signalling. It is cleaved by caspase-3 early in apoptosis, promoting Golgi fragmentation. We now show that cleavage is needed for Fas-mediated apoptosis: expression of caspase-resistant GRASP65 protects cells, whereas expression of membrane proximal caspase-cleaved GRASP65 fragments dramatically sensitises cells. GRASP65 coordinates passage through the Golgi apparatus of proteins containing C-terminal hydrophobic motifs, via its tandem PDZ type ‘GRASP'' domains. Fas/CD95 contains a C-terminal leucine–valine pairing so its trafficking might be coordinated by GRASP65. Mutagenesis of the Fas/CD95 LV motif reduces the number of cells with Golgi-associated Fas/CD95, and generates a receptor that is more effective at inducing apoptosis; however, siRNA-mediated silencing or expression of mutant GRASP65 constructs do not alter the steady state distribution of Fas/CD95. We also find no evidence for a GRASP65–Fas/CD95 interaction at the molecular level. Instead, we find that the C-terminal fragments of GRASP65 produced following caspase cleavage are targeted to mitochondria, and ectopic expression of these sensitises HeLa cells to Fas ligand. Our data suggest that GRASP65 cleavage promotes Fas/CD95-mediated apoptosis via release of C-terminal fragments that act at the mitochondria, and we identify Bcl-XL as a candidate apoptotic binding partner for GRASP65.  相似文献   

7.
In vitro assays identified the Golgi peripheral protein GRASP65 as a Golgi stacking factor that links adjacent Golgi cisternae by forming mitotically regulated trans‐oligomers. These conclusions, however, require further confirmation in the cell. In this study, we showed that the first 112 amino acids at the N‐terminus (including the first PDZ domain, PDZ1) of the protein are sufficient for oligomerization. Systematic electron microscopic analysis showed that the expression of non‐regulatable GRASP65 mutants in HeLa cells enhanced Golgi stacking in interphase and inhibited Golgi fragmentation during mitosis. Depletion of GRASP65 by small interference RNA (siRNA) reduced the number of cisternae in the Golgi stacks; this reduction was rescued by expressing exogenous GRASP65. These results provided evidence and a molecular mechanism by which GRASP65 stacks Golgi cisternal membranes. Further experiments revealed that inhibition of mitotic Golgi disassembly by expressing non‐regulatable GRASP65 mutants did not affect equal partitioning of the Golgi membranes into the daughter cells. However, it delayed mitotic entry and suppressed cell growth; this effect was diminished by dispersing the Golgi apparatus with Brefeldin A treatment prior to mitosis, suggesting that Golgi disassembly at the onset of mitosis plays a role in cell cycle progression.  相似文献   

8.
We have identified a 55 kDa protein, named GRASP55 (Golgi reassembly stacking protein of 55 kDa), as a component of the Golgi stacking machinery. GRASP55 is homologous to GRASP65, an N-ethylmaleimide-sensitive membrane protein required for the stacking of Golgi cisternae in a cell-free system. GRASP65 exists in a complex with the vesicle docking protein receptor GM130 to which it binds directly, and the membrane tethering protein p115, which also functions in the stacking of Golgi cisternae. GRASP55 binding to GM130, could not be detected using biochemical methods, although a weak interaction was detected with the yeast two-hybrid system. Cryo-electron microscopy revealed that GRASP65, like GM130, is present on the cis-Golgi, while GRASP55 is on the medial-Golgi. Recombinant GRASP55 and antibodies to the protein block the stacking of Golgi cisternae, which is similar to the observations made for GRASP65. These results demonstrate that GRASP55 and GRASP65 function in the stacking of Golgi cisternae.  相似文献   

9.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

10.
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.  相似文献   

11.
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.  相似文献   

12.
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity.  相似文献   

13.
The interaction between HIV-1 Nef and the Src kinase Hck in macrophages has been shown to accelerate the progression to AIDS. We previously showed that Nef disturbed the N-glycosylation/trafficking of Fms, a cytokine receptor essential for maintaining macrophages in an anti-inflammatory state, in an Hck-dependent manner. Here, we show the underlying molecular mechanism of this effect. Using various Hck isoforms and their mutants and Golgi-targeting Hck mutants, we confirmed that Hck activation at the Golgi causes the Nef-induced Fms N-glycosylation defect. Importantly, we found that both the co-expression of Nef and Hck and the expression of a Golgi-targeted active Hck mutant caused alterations in the distribution of GM130, a Golgi protein that was shown to be required for efficient protein glycosylation. Moreover, the activation of Hck at the Golgi caused strong serine phosphorylation of the GM130-interacting Golgi structural protein GRASP65, which is known to induce Golgi cisternal unstacking. Using pharmacological inhibitors, we also found that the activation of Hck at the Golgi followed by the activation of the MAP kinase ERK-GRASP65 cascade is involved in the Fms N-glycosylation defect. These results suggest that Nef perturbs the structure and signaling of the Golgi by activating Hck at the Golgi, and thereby, induces the N-glycosylation/trafficking defect of Fms, which is in line with the idea that Src family kinases are crucial Golgi regulators.  相似文献   

14.
Mitotic phosphorylation of the conserved GRASP domain of GRASP65 disrupts its self-association, leading to a loss of Golgi membrane tethering, cisternal unlinking, and Golgi breakdown. Recently, the structural basis of the GRASP self-interaction was determined, yet the mechanism by which phosphorylation disrupts this activity is unknown. Here, we present the crystal structure of a GRASP phosphomimic containing an aspartic acid substitution for a serine residue (Ser-189) that in GRASP65 is phosphorylated by PLK1, causing a block in membrane tethering and Golgi ribbon formation. The structure revealed a conformational change in the GRASP internal ligand that prevented its insertion into the PDZ binding pocket, and gel filtration assays showed that this phosphomimic mutant exhibited a significant reduction in dimer formation. Interestingly, the structure also revealed an apparent propagation of conformational change from the site of phosphorylation to the shifted ligand, and alanine substitution of two residues (Glu-145 and Ser-146) at penultimate positions in this chain rescued dimer formation by the phosphomimic. These data reveal the structural basis of the phosphoinhibition of GRASP-mediated membrane tethering and provide a mechanism for its allosteric regulation.  相似文献   

15.
When the ER to Golgi transport is blocked by a GTP-restricted mutant of Sar1p (H79G) in NRK-52E cells, most Golgi resident proteins are transported back into the ER. In contrast, the cis-Golgi matrix proteins GM130 and GRASP65 are retained in punctate cytoplasmic structures, namely Golgi remnants. Significant amounts of the medial-Golgi matrix proteins golgin-45, GRASP55 and giantin are retained in the Golgi remnants, but a fraction of these proteins relocates to the ER. Golgin-97, a candidate trans-Golgi network matrix protein, is retained in Golgi remnant-like structures, but mostly separated from GM130 and GRASP65. Interestingly, most Sec13p, a COPII component, congregates into larger cytoplasmic clusters soon after the microinjection of Sar1p(H79G), and these move to accumulate around the Golgi apparatus. Sec13p clusters remain associated with Golgi remnants after prolonged incubation. Electron microscopic analysis revealed that Golgi remnants are clusters of larger vesicles with smaller vesicles, many of which are coated. GM130 is mainly associated with larger vesicles and Sec13p with smaller coated vesicles. The Sec13p clusters disperse when p115 binding to the Golgi apparatus is inhibited. These results suggest that cis-Golgi matrix proteins resist retrograde transport flow and stay as true residents in Golgi remnants after the inhibition of ER to Golgi transport.  相似文献   

16.
During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled by the ATPases, p97 and NSF. Golgi reassembly stacking protein 65 (GRASP65), an NEM-sensitive membrane-bound component, is required for the stacking process. NSF-mediated cisternal regrowth requires a vesicle tethering protein, p115, which we now show operates through its two Golgi receptors, GM130 and giantin. p97-mediated cisternal regrowth is p115-independent, but we now demonstrate a role for p115, in conjunction with its receptors, in stacking p97 generated cisternae. Temporal analysis suggests that p115 plays a transient role in stacking that may be upstream of GRASP65-mediated stacking. These results implicate p115 and its receptors in the initial alignment and docking of single cisternae that may be an important prerequisite for stack formation.  相似文献   

17.
Kuo A  Zhong C  Lane WS  Derynck R 《The EMBO journal》2000,19(23):6427-6439
Transforming growth factor-alpha (TGF-alpha) and related proteins represent a family of transmembrane growth factors with representatives in flies and worms. Little is known about the transport of TGF-alpha and other transmembrane growth factors to the cell surface and its regulation. p59 was purified as a cytoplasmic protein, which at endogenous levels associates with transmembrane TGF-alpha. cDNA cloning of p59 revealed a 452 amino acid sequence with two PDZ domains. p59 is myristoylated and palmitoylated, and associates with the Golgi system, where it co-localizes with TGF-alpha. Its first PDZ domain interacts with the C-terminus of transmembrane TGF-alpha and select transmembrane proteins. p59 is the human homolog of GRASP55, which is structurally related to GRASP65. GRASP55 and GRASP65 have been shown to play a role in stacking of the Golgi cisternae in vitro. C-terminal mutations of transmembrane TGF-alpha, which decrease or abolish the interaction with p59, also strongly impair cell surface expression of TGF-alpha. Our observations suggest a role for membrane tethering of p59/GRASP55 to select transmembrane proteins, including TGF-alpha, in maturation and transport to the cell surface.  相似文献   

18.
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.  相似文献   

19.
GRASP65 links cis-Golgi cisternae via a homotypic, N-terminal PDZ interaction, and its mitotic phosphorylation disrupts this activity. Neither the identity of the PDZ ligand involved in the GRASP65 self-interaction nor the mechanism by which phosphorylation inhibits its interaction is known. Phospho-mimetic mutation of known cyclin-dependent kinase 1/cyclin B sites, all of which are in the C-terminal "regulatory domain" of the molecule, failed to block organelle tethering. However, we identified a site phosphorylated by Polo-like kinase 1 (PLK1) in the GRASP65 N-terminal domain for which mutation to aspartic acid blocked tethering and alanine substitution prevented mitotic Golgi unlinking. Further, using interaction assays, we discovered an internal PDZ ligand adjacent to the PLK phosphorylation site that was required for tethering. These results reveal the mechanism of phosphoinhibition as direct inhibition by PLK1 of the PDZ ligand underlying the GRASP65 self-interaction.  相似文献   

20.
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号