首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.  相似文献   

2.
Large animals should have higher lifetime probabilities of cancer than small animals because each cell division carries an attendant risk of mutating towards a tumour lineage. However, this is not observed—a (Peto''s) paradox that suggests large and/or long-lived species have evolved effective cancer suppression mechanisms. Using the Euler–Lotka population model, we demonstrate the evolutionary value of cancer suppression as determined by the ‘cost’ (decreased fecundity) of suppression verses the ‘cost’ of cancer (reduced survivorship). Body size per se will not select for sufficient cancer suppression to explain the paradox. Rather, cancer suppression should be most extreme when the probability of non-cancer death decreases with age (e.g. alligators), maturation is delayed, fecundity rates are low and fecundity increases with age. Thus, the value of cancer suppression is predicted to be lowest in the vole (short lifespan, high fecundity) and highest in the naked mole rat (long lived with late female sexual maturity). The life history of pre-industrial humans likely selected for quite low levels of cancer suppression. In modern humans that live much longer, this level results in unusually high lifetime cancer risks. The model predicts a lifetime risk of 49% compared with the current empirical value of 43%.  相似文献   

3.
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular.  相似文献   

4.
Human cultural traits typically result from a gradual process that has been described as analogous to biological evolution. This observation has led pioneering scholars to draw inspiration from population genetics to develop a rigorous and successful theoretical framework of cultural evolution. Social learning, the mechanism allowing information to be transmitted between individuals, has thus been described as a simple replication mechanism. Although useful, the extent to which this idealization appropriately describes the actual social learning events has not been carefully assessed. Here, we used a specifically developed computer task to evaluate (i) the extent to which social learning leads to the replication of an observed behaviour and (ii) the consequences it has for fitness landscape exploration. Our results show that social learning does not lead to a dichotomous choice between disregarding and replicating social information. Rather, it appeared that individuals combine and transform information coming from multiple sources to produce new solutions. As a consequence, landscape exploration was promoted by the use of social information. These results invite us to rethink the way social learning is commonly modelled and could question the validity of predictions coming from models considering this process as replicative.  相似文献   

5.
6.

Background

Inflorescences are complex structures with many functions. At anthesis they present the flowers in ways that allow for the transfer of pollen and optimization of the plant''s reproductive success. During flower and fruit development they provide nutrients to the developing flowers and fruits. At fruit maturity they support the fruits prior to dispersal, and facilitate effective fruit and seed dispersal. From a structural point of view, inflorescences have played important roles in systematic and phylogenetic studies. As functional units they facilitate reproduction, and are largely shaped by natural selection.

Scope

The papers in this Special Issue bridge the gap between structural and functional approaches to inflorescence evolution. They include a literature review of inflorescence function, an experimental study of inflorescences as essential contributors to the display of flowers, and two papers that present new methods and concepts for understanding inflorescence diversity and for dealing with terminological problems. The transient model of inflorescence development is evaluated in an ontogenetic study, and partially supported. Four papers present morphological and ontogenetic studies of inflorescence development in monophyletic groups, and two of these evaluate the usefulness of Hofmeister''s Rule and inhibitory fields to predict inflorescence structure. In the final two papers, Bayesian and Monte-Carlo methods are used to elucidate inflorescence evolution in the Panicoid grasses, and a candidate gene approach is used in an attempt to understand the evolutionary genetics of inflorescence evolution in the genus Cornus (Cornaceae). Taken as a whole, the papers in this issue provide a glimpse of contemporary approaches to the study of the structure, development, and evolution of inflorescences, and suggest fruitful new directions for research.  相似文献   

7.
8.
Human alpha-synuclein is a small soluble protein abundantly expressed in neurons. It represents the principal constituent of Lewy bodies, the main neuropathological characteristic of Parkinson's disease. The fragment corresponding to the region 61-95 of the protein, originally termed NAC (non-amyloid-beta component), has been found in amyloid plaques associated with Alzheimer's disease, and several reports suggest that this region represents the critical determinant of the fibrillation process of alpha-synuclein. To better understand the aggregation process of alpha-synuclein and the role exerted by the biological membranes, we studied the structure and the topology of the NAC region in the presence of SDS micelles, as membrane-mimetic environment. To overcome the low solubility of this fragment, we analyzed a recombinant polypeptide corresponding to the sequence 57-102 of alpha-synuclein, which includes some charged amino acids flanking the NAC region. Three distinct helices are present, separated by two flexible stretches. The first two helices are located closer to the micelle surface, whereas the last one seems to penetrate more deeply into the micelle. On the basis of the structural and topological results presented, a possible pathway for the aggregation process is suggested. The structural information described in this work may help to identify the appropriate target to reduce the formation of pathological alpha-synuclein aggregation.  相似文献   

9.
For many subjectively experienced outcomes, such as pain and depression, rather large placebo effects have been reported. However, there is increasing evidence that placebo interventions also affect end-organ functions regulated by the autonomic nervous system (ANS). After discussing three psychological models for autonomic placebo effects, this article provides an anatomical framework of the autonomic system and then critically reviews the relevant placebo studies in the field, thereby focusing on gastrointestinal, cardiovascular and pulmonary functions. The findings indicate that several autonomic organ functions can indeed be altered by verbal suggestions delivered during placebo and nocebo interventions. In addition, three experimental studies provide evidence for organ-specific effects, in agreement with the current knowledge on the central control of the ANS. It is suggested that the placebo effects on autonomic organ functions are best explained by the model of 'implicit affordance', which assumes that placebo effects are dependent on 'lived experience' rather than on the conscious representation of expected outcomes. Nevertheless, more studies will be needed to further elucidate psychological and neurobiological pathways involved in autonomic placebo effects.  相似文献   

10.
Summary Pancreatic polypeptide (PP) is a candidate hormone of unknown physiological significance. It is produced by a population of endocrine cells in the pancreas. In the present study a PP-like peptide was found to occur in the mammalian and avian central and peripheral nervous systems. Immunoreactive nerve fibres and nerve cell bodies were widely distributed in the brain. Dense accumulations of nerve fibres occurred in the following areas: nucleus accumbens, interstitial nucleus of the stria terminalis, para- and periventricular hypothalamic nuclei, and medial preoptic area. In addition, nerve fibres were regularly seen in cortical areas. Immunoreactive perikarya were observed in the following regions: cortex, nucleus accumbens, neostriatum and septum. In the gut, immunoreactive nerve fibers were distributed in the myenteric plexus, in smooth muscle, around blood vessels, and in the core of the villi. Immunoreactive perikarya occurred in the submucosal and myenteric plexus, suggesting that PP immunoreactive nerves are intrinsic to the gut.In the species examined, the neuronal PP-like peptide could be demonstrated with an antiserum raised against avian PP, but not with those raised against bovine or human PP. Thus, neuronal PP is distinct from the PP that occurs in pancreatic endocrine cells.  相似文献   

11.
12.

Background and Aims Hypericum perforatum

(St. John''s wort) is a widespread Eurasian perennial plant species with remarkable variation in its morphology, ploidy and breeding system, which ranges from sex to apomixis. Here, hypotheses on the evolutionary origin of St. John''s wort are tested and contrasted with the subsequent history of interspecific gene flow.

Methods

Extensive field collections were analysed for quantitative morphological variation, ploidy, chromosome numbers and genetic diversity using nuclear (amplified fragment length polymorphism) and plastid (trnL-trnF) markers. The mode of reproduction was analysed by FCSS (flow cytometric seed screen).

Key Results

It is demonstrated that H. perforatum is not of hybrid origin, and for the first time wild diploid populations are documented. Pseudogamous facultative apomictic reproduction is prevalent in the polyploids, whereas diploids are predominantly sexual, a phenomenon which also characterizes its sister species H. maculatum. Both molecular markers characterize identical major gene pools, distinguishing H. perforatum from H. maculatum and two genetic groups in H. perforatum. All three gene pools are in close geographical contact. Extensive gene flow and hybridization throughout Europe within and between gene pools and species is exemplified by the molecular data and confirmed by morphometric analyses.

Conclusions Hypericum perforatum

is of a single evolutionary origin and later split into two major gene pools. Subsequently, independent and recurrent polyploidization occurred in all lineages and was accompanied by substantial gene flow within and between H. perforatum and H. maculatum. These processes are highly influenced by the reproductive system in both species, with a switch to predominantly apomictic reproduction in polyploids, irrespective of their origin.  相似文献   

13.
14.
15.
Katrin Martens 《FEBS letters》2010,584(5):1054-1058
aP2-Cre mice have amply been used to generate conditional adipose selective inactivation of important signaling molecules. We show that the efficiency of Cre mediated recombination in adipocytes and adipose selectivity is not always guaranteed. In particular, Cre activity was found in ganglia of the peripheral nervous system (PNS), in adrenal medulla and in neurons throughout the central nervous system (CNS). Because these tissues have an important impact on adipose tissue, care should be taken when using aP2-Cre mice to define the role of the targeted genes in adipose tissue function.  相似文献   

16.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

17.
 The internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA were amplified and sequenced from 19 samples representing all species of the genus Mercurialis and two outgroup species, Ricinus communis and Acalypha hispida. The length of ITS1 in the ingroups ranged from 223 to 246 bp and ITS2 from 210 to 218 bp. Sequence divergence between pairs of species ranged from 1.15% to 25.88% among the ingroup species in the combined data of ITS1 and ITS2. Heuristic phylogenetic analyses using Fitch parsimony on the combined data of ITS1 and ITS2 with gaps treated as missing generated 45 equally parsimonious trees. The strict consensus tree was principally concordant with morphological classification. Within the genus, the ITS sequences recognised two main infrageneric clades: the M. perennis complex including three Eurasian stoloniferous species (M.␣leiocarpa, M. ovata and M. perennis) and the western Mediterranean group including eight both annual and perennial species. Of the western Mediterranean clade, the annual and perennial species grouped respectively into two different groups, and the annual life form is revealed as a synapomorphic character derived from perennial, whereas in the Eurasian clade ITS phylogeny suggested M. leiocarpa as basal clade sister to M.␣perennis and M. ovata. ITS phylogeny failed to resolve the relationships among the different cytotypes of M. ovata and M. perennis. ITS phylogeny also suggested rapid karyotypic evolution for the genus. The karyotypic divergence among the perennial species of western Mediterranean region did not corroborate the nucleotide sequence divergence among the species. Optimisation of chromosome numbers onto the ITS phylogeny suggested x=8 to be the ancestral basic chromosome number of the genus. ITS phylogeny confirmed that the androdioecy of M. ambigua is derived from dioecy. The nucleotide heterozygosity and additivity in ITS sequences clearly confirm the interspecific hybridisation in the genus Mercurialis. Received December 22, 2001; accepted May 21, 2002?Published online: November 14, 2002 Address of the authors: Martin Kr?henbühl, Yong-Ming Yuan (correspondence) and Philippe Küpfer, Institut de Botanique, Laboratoire de botanique évolutive, Université de Neuchatel, Emile-Argand 11, CH-2007 Neuchatel, Suisse. (e-mail: yong-ming.yuan@unine.ch)  相似文献   

18.
Effective control of the Ca2+ homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca2+ concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca2+signaling at subcellular resolution. Members of the superfamily of EF-hand Ca2+-binding proteins are effective to either attenuate intracellular Ca2+ transients as stochiometric buffers or function as Ca2+ sensors whose conformational change upon Ca2+ binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca2+-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca2+-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca2+-binding proteins whose expression precedes that of many other Ca2+-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca2+-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca2+signaling under physiological and disease conditions in the nervous system and beyond.  相似文献   

19.
Organ fibrosis or “scarring” is known to account for a high death toll due to the extensive amount of disorders and organs affected (from cirrhosis to cardiovascular diseases). There is no effective treatment and the in vitro tools available do not mimic the in vivo situation rendering the progress of the out of control wound healing process still enigmatic.To date, 2D and 3D cultures of fibroblasts derived from DD patients are the main experimental models available. Primary cell cultures have many limitations; the fibroblasts derived from DD are altered by the culture conditions, lack cellular context and interactions, which are crucial for the development of fibrosis and weakly represent the derived tissue. Real-time PCR analysis of fibroblasts derived from control and DD samples show that little difference is detectable. 3D cultures of fibroblasts include addition of extracellular matrix that alters the native conditions of these cells. As a way to characterize the fibrotic, proliferative properties of these resection specimens we have developed a 3D culture system, using intact human resections of the nodule part of the cord. The system is based on transwell plates with an attached nitrocellulose membrane that allows contact of the tissue with the medium but not with the plastic, thus, preventing the alteration of the tissue. No collagen gel or other extracellular matrix protein substrate is required. The tissue resection specimens maintain their viability and proliferative properties for 7 days. This is the first “organ” culture system that allows human resection specimens from DD patients to be grown ex vivo and functionally tested, recapitulating the in vivo situation.  相似文献   

20.
The architecture and neurochemistry of the enteric nervous system was studied by use of whole-mount preparations obtained by microdissection of the horse jejunum. A myenteric plexus and two plexuses within the submucosa were identified. The external submucosal plexus lying in the outermost region of the submucosa had both neural and vascular connections with the inner submucosal plexus situated closer to the mucosa. Counts of neurones stained for NADH-diaphorase demonstrated the wide variation in size, shape and neurone content of individual ganglia in both the external and internal submucosal plexuses. The average number of cells/ganglion was similar in each plexus (about 25 cells). Immunoreactivities for galanin, vasoactive intestinal peptide and neuropeptide Y were observed in nerve cell bodies and fibres of each of the plexuses. Immunoreactivity for substance P was extensive and strong in nerve fibres of all plexuses but was weaker in cell bodies of the submucosal neurones and absent in the cell bodies of the myenteric plexus. Comparative quantitative analysis of immunoreactive cell populations with total cell numbers (enzyme staining) was indicative of neuropeptide colocalization in the external submucosal plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号