首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We have previously isolated a muscle-specific Kelch gene, Kelch repeat and BTB domain containing protein 5 (Kbtbd5)/Kelch-like protein 40 (Klhl40). In this report, we identified DP1 as a direct interacting factor for Kbtbd5 using a yeast two-hybrid screen and in vitro binding assays. Our studies demonstrate that Kbtbd5 interacts and regulates the cytoplasmic localization of DP1. GST pulldown assays demonstrate that the dimerization domain of DP1 interacts with all three of the Kbtbd5 domains. We further show that Kbtbd5 promotes the ubiquitination and degradation of DP1, thereby inhibiting E2F1-DP1 activity. To investigate the in vivo function of Kbtbd5, we used gene disruption technology and engineered Kbtbd5 null mice. Targeted deletion of Kbtbd5 resulted in postnatal lethality. Histological studies reveal that the Kbtbd5 null mice have smaller muscle fibers, a disorganized sarcomeric structure, increased extracellular matrix, and decreased numbers of mitochondria compared with wild-type controls. RNA sequencing and quantitative PCR analyses demonstrate the up-regulation of E2F1 target apoptotic genes (Bnip3 and p53inp1) in Kbtbd5 null skeletal muscle. Consistent with these observations, the cellular apoptosis in Kbtbd5 null mice was increased. Breeding of Kbtbd5 null mouse into the E2F1 null background rescues the lethal phenotype of the Kbtbd5 null mice but not the growth defect. The expression of Bnip3 and p53inp1 in Kbtbd5 mutant skeletal muscle are also restored to control levels in the E2F1 null background. In summary, our studies demonstrate that Kbtbd5 regulates skeletal muscle myogenesis through the regulation of E2F1-DP1 activity.  相似文献   

2.
DNA-damage response control of E2F7 and E2F8   总被引:2,自引:0,他引:2  
Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes, such as E2F1, and reducing the level of each subunit results in an increase in E2F1 expression and activity. Importantly, depletion of either E2F7 or E2F8 prevents the cell-cycle effects that occur in response to DNA damage. Thus, E2F7 and E2F8 act upstream of E2F1, and influence the ability of cells to undergo a DNA-damage response. E2F7 and E2F8, therefore, underpin the DNA-damage response.  相似文献   

3.
E2F1 is a key positive regulator of human cell proliferation and its activity is altered in essentially all human cancers. Deregulation of E2F1 leads to oncogenic DNA damage and anti‐oncogenic apoptosis. The molecular mechanisms by which E2F1 mediates these two processes are poorly understood but are important for understanding cancer progression. During the G1‐to‐S phase transition, E2F1 associates through a short DHQY sequence with the cell‐cycle regulator HCF‐1 together with the mixed‐lineage leukaemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases. We show here that the DHQY HCF‐1‐binding sequence permits E2F1 to stimulate both DNA damage and apoptosis, and that HCF‐1 and the MLL family of H3K4 methyltransferases have important functions in these processes. Thus, HCF‐1 has a broader role in E2F1 function than appreciated earlier. Indeed, sequence changes in the E2F1 HCF‐1‐binding site can modulate both up and down the ability of E2F1 to induce apoptosis indicating that HCF‐1 association with E2F1 is a regulator of E2F1‐induced apoptosis.  相似文献   

4.
5.
6.
为探讨转录因子E2F1在血管平滑肌细胞(vascular smooth muscle cells,VSMCs)表型转化中的作用及其对E1A激活基因阻遏子(cellular repressor of E1A-stimulated genes,CREG)表达调控的分子机制,应用生物信息学方法,定位人CREG(hCREG)基因启动子并确定转录因子E2F1在hCREG启动子区的结合位点,PCR方法克隆并构建hCREG基因启动子绿色荧光报告基因载体,以hCREG启动子区E2F1结合位点为模板,化学合成E2F1寡聚脱氧核苷酸(ODN)和错配E2F1ODN,利用转录因子"诱骗(Decoy)"策略,用E2F1ODN转染体外培养的VSMCs以阻断E2F1与hCREG基因启动子区的结合,蛋白质印迹(Western blot)分析检测阻断前后细胞内hCREG蛋白、报告基因绿色荧光蛋白(green fluorescent protein,GFP)和平滑肌细胞分化标志蛋白SMα-actin表达变化.结果显示:分化表型HITASY细胞中E2F1表达下调伴出核转位,而增殖表型的HITASY细胞中E2F1蛋白表达明显增加且定位于核内.进一步应用FuGene6瞬时转染E2F1ODN和错配E2F1ODN于体外培养HITASY细胞中,蛋白质印迹分析发现,转染E2F1ODN后,HITASY细胞中hCREG、SMα-actin和GFP表达均较未阻断组及错配组细胞明显增加.上述研究结果证实,E2F1是hCREG基因转录的重要调控因子,能够直接结合于hCREG启动子区阻遏hCREG表达,参与hCREG蛋白对VSMCs表型转化的调控作用.  相似文献   

7.
8.
9.
10.
11.
12.
E2F-1-deleted mutant, 'truncated E2F' (E2Ftr, E2F-1[1-375]), lacking the carboxy-terminal transactivation domain, was shown to be more potent at inducing cancer cell apoptosis than wild-type E2F-1 (wtE2F-1; full-length E2F-1). Mechanisms by which wtE2F-1 and E2Ftr induce apoptosis, however, are not fully elucidated. Our study demonstrates molecular effects of pro-apoptotic BH3-only Bcl-2 family member Harakiri (Hrk) in wtE2F-1- and E2Ftr-induced melanoma cell apoptosis. We found that Hrk mRNA and Harakiri (HRK) protein expression was highly up-regulated in melanoma cells in response to wtE2F-1 and E2Ftr overexpression. HRK up-regulation did not require the E2F-1 transactivation domain. In addition, Hrk gene up-regulation and HRK protein expression did not require p53 in cancer cells. Hrk knockdown by Hrk siRNA was associated with significantly reduced wtE2F-1- and E2Ftr-induced apoptosis. We also found that an upstream factor, 'downstream regulatory element antagonist modulator' (DREAM), may be involved in HRK-mediated apoptosis in response to wtE2F-1 and E2Ftr overexpression. DREAM expression levels increased following wtE2F-1 and E2Ftr overexpression. Western blotting detected increased DREAM primarily in dimeric form. The homodimerization of DREAM resulting from wtE2F-1 and E2Ftr overexpression may contribute to the decreased binding activity of DREAM to the 3'-untranslated region of the Hrk gene as shown by electromobility shift assay. Results showed wtE2F-1- and E2Ftr-induced apoptosis is partially mediated by HRK. HRK function is regulated in response to DREAM. Our findings contribute to understanding the mechanisms that regulate wtE2F-1- and E2Ftr-induced apoptosis and provide insights into the further evaluation of how E2Ftr-induced apoptosis may be used for therapeutic gain.  相似文献   

13.
14.
15.
16.
目的:构建人E2F1基因原核表达质粒p GEX-KG-E2F1,并在大肠杆菌中诱导表达。随后验证纯化得到的E2F1蛋白可作为底物被甲基化转移酶修饰。方法:构建原核表达质粒p GEX-KG-E2F1,在大肠杆菌BL-21中经异丙基硫代半乳糖苷(IPTG)诱导表达,利用GST亲和层析法纯化表达的E2F1蛋白。随后将纯化的E2F1蛋白作为底物,组蛋白甲基化转移酶SET7/9作为酶进行体外同位素标记放射自显影实验,检测纯化的E2F1蛋白能否被甲基化。结果:酶切鉴定和测序结果证明成功构建了原核表达载体p GEX-KG-E2F1,SDS-PAGE检测结果证明实现了人E2F1基因在大肠杆菌中的可溶性表达,放射自显影证明纯化得到的E2F1蛋白可作为底物被甲基化转移酶SET7/9甲基化。结论:成功构建了转录因子E2F1体外甲基化体系,为筛选新的能甲基化E2F1的酶奠定基础。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号