首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.  相似文献   

2.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in sputum from cystic fibrosis (CF) patients in China. One hundred and four bacterial isolates were recovered on B. cepacia selective agar and 42 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates from CF sputum was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the 42 Bcc isolates belong to B. cepacia, B. cenocepacia and B. contaminans while predominant Bcc species was B. cenocepacia. This is the first report of B. contaminans from CF sputum in China. In addition, results from this study showed that chitosan solution at 10, 25, 50 and 100 μg/ml markedly inhibited the growth of the 16 representative isolates from the three different Bcc species, which indicated that chitosan was a potential bactericide against Bcc bacteria.  相似文献   

3.
Airway disease resulting from chronic bacterial colonization and consequential inflammation is the leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Although traditionally considered to be due to only a few pathogens, recent re-examination of CF airway microbiology has revealed that polymicrobial communities that include many obligate anaerobes colonize lower airways. The purpose of this study was to examine Prevotella species in CF airways by quantitative culture and phenotypic characterization. Expectorated sputum was transferred to an anaerobic environment immediately following collection and examined by quantitative microbiology using a variety of culture media. Isolates were identified as facultative or obligate anaerobes and the later group was identified by 16S rRNA sequencing. Prevotella spp. represented the majority of isolates. Twelve different species of Prevotella were recovered from 16 patients with three species representing 65% of isolates. Multiple Prevotella species were often isolated from the same sputum sample. These isolates were biochemically characterized using Rapid ID 32A kits (BioMérieux), and for their ability to produce autoinducer-2 and β-lactamases. Considerable phenotypic variability between isolates of the same species was observed. The quantity and composition of Prevotella species within a patients’ airway microbiome varied over time. Our results suggest that the diversity and dynamics of Prevotella in CF airways may contribute to airway disease.  相似文献   

4.
The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.  相似文献   

5.

Background

There is strong evidence that culture-based methods detect only a small proportion of bacteria present in the respiratory tracts of cystic fibrosis (CF) patients.

Methodology/Principal Findings

Standard microbiological culture and phenotypic identification of bacteria in sputa from CF patients have been compared to molecular methods by the use of 16S rDNA amplification, cloning and sequencing. Twenty-five sputa from CF patients were cultured that yield 33 isolates (13 species) known to be pathogens during CF. For molecular cloning, 760 clones were sequenced (7.2±3.9 species/sputum), and 53 different bacterial species were identified including 16 species of anaerobes (30%). Discrepancies between culture and molecular data were numerous and demonstrate that accurate identification remains challenging. New or emerging bacteria not or rarely reported in CF patients were detected including Dolosigranulum pigrum, Dialister pneumosintes, and Inquilinus limosus.

Conclusions/Significance

Our results demonstrate the complex microbial community in sputa from CF patients, especially anaerobic bacteria that are probably an underestimated cause of CF lung pathology. Metagenomic analysis is urgently needed to better understand those complex communities in CF pulmonary infections.  相似文献   

6.
Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.  相似文献   

7.
Candida albicans is a common microbe, colonizer and potential pathogen found in respiratory cultures of cystic fibrosis (CF) patients. Because of possible development of resistance in patient isolates resulting from residence in the abnormal milieu of CF patient airways, or from exposure to antifungals, and considering the possibility of patient-to-patient spread of microbes and reports of elevated resistance to other fungal pathogens, it was important to assay the susceptibility of isolates of Candida and compare that profile to isolates from the community. In our center, and unlike another fungal pathogen, no increase in resistance of Candida isolates of the CF cohort was found.  相似文献   

8.
The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila–associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.  相似文献   

9.
BackgroundFor many years fluconazole has been commonly used to treat Candida infections. However, the indiscriminate use of this antimycotic therapy has favored the emergence of resistant isolates. Mutations in the ERG11 gene have been described as one of the primary mechanisms of resistance in Candida species.AimsIn this study we investigated missense mutations in ERG11 genes of Candida albicans, Candida glabrata and Candida tropicalis isolates previously evaluated by susceptibility testing to fluconazole.MethodsScreening for these mutations was performed on 19 Candida clinical isolates (eight C. albicans, five C. glabrata and six C. tropicalis) resistant and susceptible to fluconazole. The ERG11 gene was amplified by PCR with specific primers for each Candida species and analyzed by automated sequencing.ResultsWe identified 14 different missense mutations, five of which had not been described previously. Among them, a new mutation L321F was identified in a fluconazole resistant C. albicans isolate and it was analyzed by a theoretical three-dimensional structure of the ERG11p.ConclusionThe L321F mutation in C. albicans ERG11 gene may be associated with fluconazole resistance.  相似文献   

10.

Background

Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse.

Methods

One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS.

Results

For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively.

Conclusions

rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.  相似文献   

11.
Burkholderia multivorans is a member of the Burkholderia cepacia complex (Bcc), notorious for its pathogenicity in persons with cystic fibrosis. Epidemiological surveillance suggests that patients predominantly acquire B. multivorans from environmental sources, with rare cases of patient-to-patient transmission. Here we report on the genomic analysis of thirteen isolates from an endemic B. multivorans strain infecting four cystic fibrosis patients treated in different pediatric cystic fibrosis centers in Belgium, with no evidence of cross-infection. All isolates share an identical sequence type (ST-742) but whole genome analysis shows that they exhibit peculiar patterns of genomic diversity between patients. By combining short and long reads sequencing technologies, we highlight key differences in terms of small nucleotide polymorphisms indicative of low rates of adaptive evolution within patient, and well-defined, hundred kbps-long segments of high enrichment in mutations between patients. In addition, we observed large structural genomic variations amongst the isolates which revealed different plasmid contents, active roles for transposase IS3 and IS5 in the deactivation of genes, and mobile prophage elements. Our study shows limited within-patient B. multivorans evolution and high between-patient strain diversity, indicating that an environmental microdiverse reservoir must be present for this endemic strain, in which active diversification is taking place. Furthermore, our analysis also reveals a set of 30 parallel adaptations across multiple patients, indicating that the specific genomic background of a given strain may dictate the route of adaptation within the cystic fibrosis lung.  相似文献   

12.
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lower airways of patients with cystic fibrosis. Throughout the course of infection this organism undergoes adaptations that contribute to its long-term persistence in the airways. While P. aeruginosa diversity has been documented, it is less clear to what extent within-patient diversity contributes to the overall population structure as most studies have been limited to the analysis of only a few isolates per patient per time point. To examine P. aeruginosa population structure in more detail we collected multiple isolates from individual sputum samples of a patient chronically colonized with P. aeruginosa. This strain collection, comprised of 169 clonal isolates and representing three pulmonary exacerbations as well as clinically stable periods, was assayed for a wide selection of phenotypes. These phenotypes included colony morphology, motility, quorum sensing, protease activity, auxotrophy, siderophore levels, antibiotic resistance, and growth profiles. Each phenotype displayed significant variation even within isolates of the same colony morphotype from the same sample. Isolates demonstrated a large degree of individuality across phenotypes, despite being part of a single clonal lineage, suggesting that the P. aeruginosa population in the cystic fibrosis airways is being significantly under-sampled.  相似文献   

13.
Trichoderma, soil-borne filamentous fungi, are capable of parasitising several plant pathogenic fungi. Twelve isolates of Trichoderma spp. isolated from different locations of South Andaman were characterized for their cultural, morphological and antagonistic activity against soil borne and foliar borne pathogens. The sequencing of these isolates showed seven different species. The isolates revealed differential reaction patterns against the test pathogens viz., Sclerotium rolfsii, Colletotrichum gloeosporioides and C. capsici. However, the isolates, TND1, TWN1, TWC1, TGD1 and TSD1 were most effective in percentage inhibition of mycelial growth of test pathogens. Significant chitinase and β-1,3-glucanase activities of all Trichoderma isolates has been recorded in growth medium. T. viride was found with highest chitinase whereas T. harzianum was recorded with highest β-1,3-glucanase activities.  相似文献   

14.

Background

Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

Aims

The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

Methods

The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

Results

A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

Conclusions

The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.  相似文献   

15.
In spite of its basic and applied interest, the regulation of ER exit by filamentous fungi is insufficiently understood. In previous work we isolated a panel of conditional mutations in sarA encoding the master GTPase SarASAR1 in A. nidulans and demonstrated its key role in exocytosis and hyphal morphogenesis. However, the SAR1 guanine nucleotide exchange factor (GEF), Sec12, has not been characterized in any filamentous fungus, largely due to the fact that SEC12 homologues share little amino acid sequence identity beyond a GGGGxxxxGϕxN motif involved in guanine nucleotide exchange. Here we demonstrate that AN11127 encodes A. nidulans Sec12, which is an essential protein that localizes to the ER and that, when overexpressed, rescues the growth defect resulting from a hypomorphic sarA6ts mutation at 37 °C. Using purified, bacterially expressed proteins we demonstrate that the product of AN11127 accelerates nucleotide exchange on SarASAR1, but not on its closely related GTPase ArfAARF1, as expected for a bona fide GEF. The unequivocal characterization of A. nidulans Sec12 paves the way for the tailored modification of ER exit in a model organism that is closely related to industrial species of filamentous fungi.  相似文献   

16.
Cystic fibrosis patients are highly susceptible to infections with non-tuberculous mycobacteria. Especially Mycobacterium abscessus infections are common but reliable diagnosis is hampered by non-specific clinical symptoms and insensitive mycobacterial culture. In the present study we established novel methods for rapid detection and immune characterization of Mycobacterium abscessus infection in cystic fibrosis patients. We performed Mycobacterium abscessus specific DNA-strip- and quantitative PCR-based analyses of non-cultured sputum samples to detect and characterize Mycobacterium abscessus infections. Concomitantly in vitro T-cell reactivation with purified protein derivatives (PPDs) from different mycobacterial species was used to determine Mycobacterium abscessus specific T-cell cytokine expression of infected cystic fibrosis patients. Four of 35 cystic fibrosis patients (11.4%) were Mycobacterium abscessus culture positive and showed concordant DNA-strip-test results. Quantitative PCR revealed marked differences of mycobacterial burden between cystic fibrosis patients and during disease course. Tandem-repeat analysis classified distinct Mycobacterium abscessus strains of infected cystic fibrosis patients and excluded patient-to-patient transmission. Mycobacterium abscessus specific T-cells were detected in the blood of cystic fibrosis patients with confirmed chronic infection and a subgroup of patients without evidence of Mycobacterium abscessus infection. Comparison of cytokine expression and phenotypic markers revealed increased proportions of CD40L positive T-cells that lack Interleukin-2 expression as a marker for chronic Mycobacterium abscessus infections in cystic fibrosis patients. Direct sputum examination enabled rapid diagnosis and quantification of Mycobacterium abscessus in cystic fibrosis patients. T-cell in vitro reactivation and cytokine expression analyses may contribute to diagnosis of chronic Mycobacterium abscessus infection.  相似文献   

17.
The fungal kingdom is extremely diverse – comprised of over 1.5 million species including yeasts, molds and mushrooms. Essentially, all fungi have cell walls that contain chitin and the cells of most fungi grow as tube-like filaments called hyphae. These filamentous fungi, such as the mold Neurospora crassa, develop branched radial networks of hyphae referred to as mycelium. In contrast, non-filamentous fungi do not form radial mycelia, but grow as single cells, which reproduce by either budding or fission such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, respectively. Finally, there are fungi that are capable of switching between single cell, yeast form growth and filamentous growth such as Candida albicans. The switch from yeast to filamentous growth in these so-called dimorphic fungi is a virulence trait in many human and plant pathogens. Highly conserved master regulators of all three fungal growth modes – filamentous, non-filamentous and dimorphic – are the Ras and Rho small GTPases, which spatially and temporally control cell polarity establishment and maintenance. This review summarizes the key roles of the Ras and Rho GTPases during hyphal morphogenesis in a range of fungi.  相似文献   

18.

Introduction

Cystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection.

Methods

Six patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE) was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene.

Results

New respiratory pathogens prompting investigation included: Mycobacterium abscessus(2), Stenotrophomonas maltophilia(3), Pseudomonas aeruginosa(3), Pseudomonas fluorescens(1), Nocardia spp.(1), and Achromobacter xylosoxidans(1). A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1), Microbacterium(1), Staphylococcus(3), Stenotrophomonas(2), Streptococcus(2), Sphingomonas(1), and Pseudomonas(4). PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa) from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques.

Conclusions

Members of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from the home environment were not genetically related to those isolated from the lower airways of individuals with CF suggesting alternate sources of infection were more common, a few genetically related isolates were indeed identified. As such, the home environment may rarely serve as either the source of infection or a persistent reservoir for re-infection after clearance.  相似文献   

19.
20.
Opportunistic microbes are able to exist as commensals or pathogens depending on local environmental conditions. The bacterial microbiome at mucosal sites (gut, oral and vaginal) has been well characterized but there has been less focus on the fungal component of the microbiome, the “mycobiome”, especially of the oral mucosa. Genomic characterization studies have shown that Candida species are the most prevalent fungal species in the mycobiomes of the murine gut and human oral cavity, with C. albicans being the most abundant fungal species in the oral cavity. In this review, we outline recent advances in the characterization of the oral mycobiome, how different Candida species colonize, invade and infect the oral cavity, and how epithelial surfaces play a key role in antifungal activity and discriminate between commensal and pathogenic Candida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号