首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control- and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes.  相似文献   

2.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

3.
The objective of this study was to examine alcohol-induced changes of bone in hormone-deficient males using the developed method. In the process of bone resorption, type I collagen crosslinking molecules, pyridinoline (PYD), are released into the circulation and cleared by the kidneys. 2H2O as a tracer has been applied to measure the synthesis rates of slow-turnover proteins and successfully applied to bone collagen synthesis in our hormone deficiency rats. This study demonstrated for the first time, the early changes of the femur bone degradation in hormone-deficient male individuals, more influenced by alcohol through histopathological study, serum PYD assay, and 2H2O labeling. We also observed that serum PYD was a sensitive pathological marker of bone degradation in castrated osteoporosis males and the unique features of 2H2O labeling to measure the bone turnover collagen synthesis rates were excellent markers of bone degradation and aging.  相似文献   

4.
Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients.  相似文献   

5.
The localization of cathepsins B, D, and L was studied in rat osteoclasts by immuno-light and-electron microscopy using the avidin-biotin-peroxidase complex (ABC) method. In cryosections prepared for light microscopy, immunoreactivity for cathepsin D was found in numerous vesicles and vacuoles but was not detected along the resorption lacunae of osteoclasts. However, immunoreactivity for cathepsins B and L occurred strongly along the lacunae, and only weak intracellular immunoreactivity was observed in the vesicles and peripheral part of the vacuoles near the ruffled border. In control sections that were not incubated with the antibody, no cathepsins were found in the osteoclasts or along the resorption lacunae of osteoclasts. At the electron microscopic level, strong intracellular reactivity of cathepsin D was found in numerous vacuoles and vesicles, while extracellular cathepsin D was only slightly detected at the base of the ruffled border but was not found in the eroded bone matrix. Most osteoclasts showed strong extracellular deposition of cathepsins B and L on the collagen fibrils and bone matrix under the ruffled border. The extracellular deposition was stronger for cathepsin L than for cathepsin B. Furthermore cathepsins B and L immunolabled some pits and part of the ampullar extracellular spaces, appearing as vacuoles in the sections. Conversely, the intracellular reactivity for cathepsins B and L was weak: cathepsin-containing vesicles and vacuoles as primary and secondary lysosomes occurred only sparsely. These findings suggest that cathepsins B and L, unlike cathepsin D, are rapidly released into the extracellular matrix and participate in the degradation of organic bone matrix containing collagen fibrils near the tip of the ruffled border. Cathepsin L may be more effective in the degradation of bone matrix than cathepsin B.  相似文献   

6.
CD44 is a multifunctional adhesion molecule that binds to hyaluronic acid, type I collagen, and fibronectin. We have studied the immunohistochemical localization of CD44 in bone cells by confocal laser scanning microscopy and transmission electron microscopy in order to clarify its role in the cell-cell and/or cell-matrix interaction of bone cells. In round osteoblasts attached to bone surfaces, immunoreactivity is restricted to their cytoplasmic processes. On the other hand, osteocytes in bone matrices show intense immunoreactivity on their plasma membrane. Intense immunoreactivity for CD44 can be detected on the basolateral plasma membranes of osteoclasts. There is considerably less reactivity observed in the area of the plasma membrane that is in direct contact with bone. The pre-embedding electron-microscopical method has revealed that CD44 is mainly localized on the basolateral plasma membrane of osteoclasts. However, the ruffled border and clear zone show little immunoreactivity. A CD44-positive reaction can be detected on both plasma membranes in the contact region between osteoclasts and osteocytes. These findings suggest that: 1) cells of the osteoblast lineage express CD44 in accordance with their morphological changes from osteoblasts into osteocytes; 2) osteoclasts express CD44 on their basolateral plasma membrane; 3) CD44 in osteoclasts and osteocytes may play an important role in cell-cell and/or cell-matrix attachment via extracellular matrices.  相似文献   

7.
8.
《Matrix biology》2006,25(3):149-157
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.  相似文献   

9.
Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease.As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation.An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts.  相似文献   

10.
Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.  相似文献   

11.
Summary Osteoclasts in metaphyses from young rats were systematically sectioned at different levels. Two types of osteoclasts were recognized. One type had no ruffled border while the other, and predominant type contained a ruffled border in a part of its length; some of the latter contained two ruffled borders. The closest contact between osteoclast and bone occurred at the level of the ruffled border and this bone under the border showed characteristic changes indicative of resorption. In some osteoclasts the ruffled border consisted of numerous slender cytoplasmic projections separated by very narrow spaces or channels while in other osteoclasts it was more open. The ruffled border was commonly surrounded by a transitional zone containing numerous thin filaments. The osteoclast usually had its greatest dimension at the level of the ruffled border and the cytoplasm here contained many bodies and vacuoles but a sparse endoplasmic reticulum. Away from the level of the ruffled border the cytoplasmic vacuoles and bodies were fewer while the endoplasmic reticulum was often more pronounced. Parts of the osteoclasts were usually situated close to a vessel. It is suggested that there is a correlation between the development of the ruffled border and the degree of bone resorption and that osteoclasts without a ruffled border are, at least temporarily, inactive with respect to bone resorption. The numerous cytoplasmic bodies, interpreted as lysosomes, are presumed to be important in the resorption process. The closely adjacent positioning of osteoclasts and vessels may facilitate the transport of resorption products to the blood.This research was supported by the Danish Research Council. Grant no. 512–727, 512–819 and 512–1545.I wish to thank Professor Arvid B. Maunsbach for valuable discussions.  相似文献   

12.
Sintered compounds prepared with β-tricalcium phosphate (β-TCP) are commonly used as biocompatible materials for bone regenerative medicine. Although implanted β-TCP is gradually replaced with new bone after resorption by osteoclasts, exactly how osteoclasts resorb β-TCP is not well understood. To elucidate this mechanism, we analyzed the structure of β-TCP discs on which mouse mature osteoclasts were cultured using scanning electron microscopy. We found that β-TCP was resorbed by mature osteoclasts on one side of each disc, as evidenced by the formation of multiple spine-like crystals at the exposed areas. Because osteoclasts secrete acid to resorb bone minerals, we mimicked this acidification by dipping β-TCP slices into HCl solution (pH 2.0). However, no spine-like crystals appeared even though the size of each β-TCP particle was reduced. On dentin slices, osteoclasts formed clear actin rings, which are cytoskeletal structures characteristic of bone-resorbing osteoclasts. No clear actin rings were observed in osteoclasts cultured on β-TCP slices, although small actin dots were observed. Analysis by transmission electron microscopy showed that osteoclasts attached to β-TCP particles. These results suggest that osteoclasts resorb β-TCP particles independently of clear actin ring formation.  相似文献   

13.
There is increasing evidence that extracellular nucleotides act on bone cells via P2 receptors. This study investigated the action of ADP and 2-methylthioADP, a potent ADP analog with selectivity for the P2Y(1) receptor, on osteoclasts, the bone-resorbing multinuclear cells. Using three different assays, we show that ADP and 2-methylthioADP at nanomolar to submicromolar levels caused up to fourfold to sixfold increases in osteoclastic bone resorption. On mature rat osteoclasts, cultured for 1 day on polished dentine disks, peak effects on resorption pit formation were observed between 20 nM and 2 microM of ADP. The same concentrations of ADP also stimulated osteoclast and resorption pit formation in 10-day mouse marrow cultures on dentine disks. In 3-day explant cultures of mouse calvarial bones, the stimulatory effect of ADP on osteoclast-mediated Ca(2+) release was greatest at 5-50 microM and equivalent to the maximal effects of prostaglandin E(2). The ADP effects were blocked in a nontoxic manner by MRS 2179, a P2Y(1) receptor antagonist. Using in situ hybridization and immunocytochemistry, we found evidence for P2Y(1) receptor expression on both osteoclasts and osteoblasts; thus, ADP could exert its actions both directly on osteoclasts and indirectly via P2Y(1) receptors on osteoblasts. As a major ATP degradation product, ADP is a novel stimulator of bone resorption that could help mediate inflammatory bone loss in vivo.  相似文献   

14.
The site of action of cysteine-proteinases (CPs) and matrix metalloproteinases (MMPs) in the degradation of bone collagen by osteoclasts was investigated by evaluating the effects of the CP-inhibitor trans-epoxy-succinyl-L-leucylamido (4-guanidino)-butane (E-64) and the MMP-inhibitor N-(3-N-benzyloxycarbonyl amino-1-R-carboxypropyl)-L-leucyl-O-methyl-L-tyrosine N-methylamide (Cl-1) in an in vitro model system of PTH-stimulated mouse calvaria. In the presence of each of the two inhibitors a large area of collagen free of mineral crystallites was seen adjacent to the ruffled border of the osteoclasts. Following a culture period of 24 h this area proved to be about 10 times larger in inhibitor-treated explants than in controls. Moreover the percentage of osteoclasts in close contact with such demineralized bone areas appeared to be significantly higher in inhibitor-treated explants than in control specimens (60% and 5%, respectively). These effects were not apparent when the osteoclastic activity was inhibited with calcitonin. No significant differences were found between the effects of the two inhibitors, E-64 and Cl-1. Our observations indicate that under the influence of inhibitors of MMPs and CPs demineralization of bone by osteoclasts proceeded up to a certain point whereas matrix degradation was strongly inhibited. It is concluded that within the osteoclastic resorption lacuna both CPs and MMPs participate in the degradation of the collagenous bone matrix.  相似文献   

15.
3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5–18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro707 and newly identified sites at Pro716 and Pro719, at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon.  相似文献   

16.
Cathepsin K (CatK), a major lysosomal collagenase produced by osteoclasts, plays an important role in bone resorption. Evidence exists that the collagenase activity of CatK is promoted by chondroitin sulfate (CS), a sulfated glycosaminoglycan. This study examines the role of CS in facilitating CatK activation. We have demonstrated that chondroitin 4-sulfate (C4-S) promotes autoprocessing of the pro-domain of CatK at pH ≤ 5, leading to a fully matured enzyme with collagenase and peptidase activities. We present evidence to demonstrate this autoactivation process is a trans-activation event that is efficiently inhibited by both the covalent cysteine protease inhibitor E-64 and the reversible selective CatK inhibitor L-006,235. During bone resorption, CatK and C4-S are co-localized at the ruffled border between osteoclast bone interface, supporting the proposal that CatK activation is accomplished through the combined action of the acidic environment together with the presence of a high concentration of C4-S. Formation of a multimeric complex between C4-S and pro-CatK has been speculated to accelerate CatK autoactivation and promote efficient collagen degradation. Together, these results demonstrate that CS plays an important role in contributing to the enhanced efficiency of CatK collagenase activity in vivo.  相似文献   

17.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

18.
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix.  相似文献   

19.
Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme l-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate.  相似文献   

20.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号