首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed.

Methodology/Principal Findings

In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced.

Conclusions/Significance

These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors.  相似文献   

2.
3.
Highlights? PP2Ac is constitutively activated and targets MyD88 in LPS-tolerized macrophages ? Constitutively active PP2Ac shifts a proinflammatory MyD88 to its prosurvival mode ? Constitutively active PP2Ac reprograms gene-specific chromatin modification landscape ? Constitutively active PP2Ac broadly defines ET at both signaling and epigenetic levels  相似文献   

4.
Helix α4 of Bacillus thuringiensis Cry toxins is thought to play a critical role in the toxins'' mode of action. Accordingly, single-site substitutions of many Cry1Aa helix α4 amino acid residues have previously been shown to cause substantial reductions in the protein''s pore-forming activity. Changes in protein structure and formation of intermolecular disulfide bonds were investigated as possible factors responsible for the inactivity of these mutants. Incubation of each mutant with trypsin and chymotrypsin for 12 h did not reveal overt structural differences with Cry1Aa, although circular dichroism was slightly decreased in the 190- to 210-nm region for the I132C, S139C, and V150C mutants. The addition of dithiothreitol stimulated pore formation by the E128C, I132C, S139C, T142C, I145C, P146C, and V150C mutants. However, in the presence of these mutants, the membrane permeability never reached that measured for Cry1Aa, indicating that the formation of disulfide bridges could only partially explain their loss of activity. The ability of a number of inactive mutants to compete with wild-type Cry1Aa for pore formation in brush border membrane vesicles isolated from Manduca sexta was also investigated with an osmotic swelling assay. With the exception of the L147C mutant, all mutants tested could inhibit the formation of pores by Cry1Aa, indicating that they retained receptor binding ability. These results strongly suggest that helix α4 is involved mainly in the postbinding steps of pore formation.During the last few decades, the insecticidal toxins produced by Bacillus thuringiensis have been used increasingly in the forms of formulated sprays and transgenic plants for the highly focused biological control of insect pests (29). At the same time, the mechanism by which these proteins form pores in the apical membrane of midgut epithelial cells of targeted insects has been studied extensively (7, 29). In the case of the three-domain Cry toxins, specificity is mostly attributable to their capacity to bind to certain proteins located on the surface of the intestinal membrane through specific segments of domains II and III, composed mainly of β sheets (16, 27). On the other hand, membrane insertion and pore formation are thought to occur through elements of domain I, composed of a bundle of six amphipathic α-helices surrounding the highly hydrophobic helix α5 (17, 20).Several lines of evidence indicate that helices α4 and α5 play a particularly important role in these processes (3). Spectroscopic studies with synthetic peptides corresponding to domain I helices revealed that α4 and α5 have the greatest propensity for insertion into artificial membranes, although insertion and pore formation were most efficient when α4 and α5 were connected by a segment corresponding to the α4-α5 loop of the toxin (13, 14). A particularly large number of single-site mutations with altered amino acids from these helices, which lead to a strong reduction in the toxicity and pore-forming ability of the toxin, have been characterized (2, 9, 10, 15, 18, 23, 25, 30, 31, 33). Finally, a site-directed chemical modification study has provided strong evidence that α4 lines the lumens of the pores formed by the toxin (23).Recent studies have established that toxin activity is especially sensitive to modifications not only in the charged residues of α4 (31) but in most of its hydrophilic residues (15). Furthermore, the loss of activity of most of these mutants did not result from an altered selectivity or size of the pores but from a reduced pore-forming capacity of the toxin (15, 31). In order to better understand the role of α4 in the mechanism of pore formation, the present study was carried out with a series of previously characterized Cry1Aa mutants in which most of the residues from this helix were replaced by cysteines (15). By subjecting these mutants to circular dichroism (CD), protease sensitivity, pore formation inhibition, and electrophoretic mobility analyses, our data suggest that the mutations in α4 which alter the pore-forming ability of Cry1Aa do so mainly by preventing the proper oligomerization or membrane insertion of the toxin.  相似文献   

5.
Membrane fusion at the vacuole, the lysosome equivalent in yeast, requires the HOPS tethering complex, which is recruited by the Rab7 GTPase Ypt7. HOPS provides a template for the assembly of SNAREs and thus likely confers fusion at a distinct position on vacuoles. Five of the six subunits in HOPS have a similar domain prediction with strong similarity to COPII subunits and nuclear porins. Here, we show that Vps18 indeed has a seven-bladed β-propeller as its N-terminal domain by revealing its structure at 2.14 Å. The Vps18 N-terminal domain can interact with the N-terminal part of Vps11 and also binds to lipids. Although deletion of the Vps18 N-terminal domain does not preclude HOPS assembly, as revealed by negative stain electron microscopy, the complex is instable and cannot support membrane fusion in vitro. We thus conclude that the β-propeller of Vps18 is required for HOPS stability and function and that it can serve as a starting point for further structural analyses of the HOPS tethering complex.  相似文献   

6.
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.  相似文献   

7.
γ-Secretase is a large enzyme complex comprising presenilin, nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1 that mediates the intramembrane proteolysis of a large number of proteins including amyloid precursor protein and Notch. Recently, a novel γ-secretase activating protein (GSAP) was identified that interacts with γ-secretase and the C-terminal fragment of amyloid precursor protein to selectively increase amyloid-β production. In this study we have further characterized the role of endogenous and exogenous GSAP in the regulation of γ-secretase activity and amyloid-β production in vitro. Knockdown of GSAP expression in N2a cells decreased amyloid-β levels. In contrast, overexpression of GSAP in HEK cells expressing amyloid precursor protein or in N2a cells had no overt effect on amyloid-β generation. Likewise, purified recombinant GSAP had no effect on amyloid-β generation in two distinct in vitro γ-secretase assays. In subsequent cellular studies with imatinib, a kinase inhibitor that reportedly prevents the interaction of GSAP with the C-terminal fragment of amyloid precursor protein, a concentration-dependent decrease in amyloid-β levels was observed. However, no interaction between GSAP and the C-terminal fragment of amyloid precursor protein was evident in co-immunoprecipitation studies. In addition, subchronic administration of imatinib to rats had no effect on brain amyloid-β levels. In summary, these findings suggest the roles of GSAP and imatinib in the regulation of γ-secretase activity and amyloid-β generation are uncertain.  相似文献   

8.
O2 sensing in diverse protozoa depends on the prolyl 4 hydroxylation of Skp1 and modification of the resulting hydroxyproline with a series of five sugars. In yeast, plants, and animals, Skp1 is associated with F-box proteins. The Skp1–F-box protein heterodimer can, for many F-box proteins, dock onto cullin-1 en route to assembly of the Skp1–cullin-1–F-box protein–Rbx1 subcomplex of E3SCFUb ligases. E3SCFUb ligases conjugate Lys48-polyubiquitin chains onto targets bound to the substrate receptor domains of F-box proteins, preparing them for recognition by the 26S proteasome. In the social amoeba Dictyostelium, we found that O2 availability was rate-limiting for the hydroxylation of newly synthesized Skp1. To investigate the effect of reduced hydroxylation, we analyzed knockout mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glycosyltransferases. Proteomic analysis of co-immunoprecipitates showed that wild-type cells able to fully glycosylate Skp1 had a greater abundance of an SCF complex containing the cullin-1 homolog CulE and FbxD, a newly described WD40-type F-box protein, than the complexes that predominate in cells defective in Skp1 hydroxylation or glycosylation. Similarly, the previously described FbxA–Skp1CulA complex was also more abundant in glycosylation-competent cells. The CulE interactome also included higher levels of proteasomal regulatory particles when Skp1 was glycosylated, suggesting increased activity consistent with greater association with F-box proteins. Finally, the interactome of FLAG-FbxD was modified when it harbored an F-box mutation that compromised Skp1 binding, consistent with an effect on the abundance of potential substrate proteins. We propose that O2-dependent posttranslational glycosylation of Skp1 promotes association with F-box proteins and their engagement in functional E3SCFUb ligases that regulate O2-dependent developmental progression.Timely protein degradation is a cornerstone of cell cycling and the regulation of numerous physiological and developmental processes. Eukaryotes have evolved an extensive array of polyubiquitination enzymes to tag proteins on a protein-by-protein basis as a recognition marker for degradation in the 26S proteasome. The cullin-RING ubiquitin ligases (CRLs)1 are a prominent subgroup of these enzymes (1) and consist of an E3 architecture that includes a substrate receptor, an adaptor (in most cases), the cullin scaffold, the RING protein, and an exchangeable E2 ubiquitin donor that has been charged with ubiquitin (Ub) by an E1 enzyme. The first discovered and still prototypic example is the CRL1 class (2), also referred to as SCF on account of the names of its founding subunits, Skp1, cullin-1, and F-box proteins (FBPs). The CRL1 (or SCF) complexes utilize FBPs as substrate receptors, Skp1 as the adaptor linking the FBP to the N-terminal region of cullin-1 (Cul1), and Rbx1 as the RING protein that tethers the E2 Ub donor to the Cul1 C-terminal region (see Fig. 2B). CRL1s can be activated by neddylation of Cul1 by a Nedd8-specific E2, which mobilizes Rbx1 to afford rotational flexibility of the E2 and displaces the inhibitor Cand1, permitting docking of the Skp1–FBP heterodimer (35). Deneddylation mediated by the eight-subunit COP9 signalosome is required for in vivo activity, suggesting that Cand1 serves as a substrate exchange factor to allow for re-equilibration of SCF complexes from preexisting subunits. Each reaction cycle requires the exchange of a new E2-Ub and typically assembles a K48-linked polyUb chain that is recognized by the proteasome. Substrate specificity is conferred by FBPs, a gene family that numbers 69 in humans, 20 in budding yeast, 300 in Caenorhabditis elegans, and ∼800 in Arabidopsis. Some characterized FBPs can recognize perhaps a dozen or more substrates, and the coding of recognition and the meaning of their control by the same FBP is under intense investigation (6). Recognition is often activated by posttranslational modification of the substrate (often phosphorylation). Regulation of SCF Ub ligases has centered on the neddylation cycle, which potentially influences all seven known CRLs. Regulation of Skp1, investigated in this paper, would be specific to CRLs possessing Skp1, which include CRL1 and possibly the minor class CRL7 (7).Open in a separate windowFig. 2.Skp1 modification pathway and global analysis of Skp1 interactions. A, Skp1 is sequentially modified by the indicated enzymes (in blue), resulting in the formation of a pentasaccharide at Pro143. B, model of the SCF complex in the context of the overall E3 Ub ligase, from studies in yeast, plants, and animals. Catalysis involves transfer of Ub from an exchangeable Ub-E2 conjugate to the substrate. Removal of Nedd8 by the COP9 signalosome facilitates binding of Cand1 to Cul1, which inhibits binding of Skp1 to Cul1. C, D, vegetative (growth stage) cells were filter-lysed, and a cytosolic fraction prepared via ultracentrifugation was chromatographed on a Superose 12 gel filtration column. Fractions were analyzed via Western blotting (representative examples are shown in C) followed by densitometry (D). The elution position of free Skp1 from a separate trial is indicated.The basic SCF model is thought to be widespread among eukaryotes but has been extensively studied only in fungi/yeasts, plants, and animals. The broad phylogeny represented by protists includes many benign and pathogenic unicellular organisms of great economic, health, and environmental impact. Emerging evidence reveals that Skp1 in some of these groups is subject to a novel form of prolyl 4(trans)-hydroxylation and complex glycosylation (8). The roles of these Skp1 modifications have been most studied in the social amoeba Dictyostelium, which undergoes a starvation-induced developmental program during which individual amoebae chemotactically aggregate into an initial mound that then elongates into a migratory slug. Under appropriate conditions, the slug reorganizes to form a fruiting body consisting of a ball of spores supported by a vertical cellular stalk. The slug-to-fruit switch, referred to as culmination, and sporulation are regulated by checkpoints that are sensitive to multiple factors, including O2 (911). Functional studies of Dictyostelium Skp1 hydroxylation and glycosylation reveal roles in regulating the O2 dependence of culmination and sporulation (1214). For example, wild-type (wt) cells require 7% to 10% O2 and phyA requires 18% to 21% O2 in order to achieve 50% spore formation (a quantitative measure of fruiting body formation), whereas glycosylation mutants exhibit a complex pattern of intermediate requirements (13). In addition, at 21% O2, phyA cells require an additional 3 to 4 h to complete development relative to their wt counterparts (14). In the apicomplexan Toxoplasma gondii, PhyA is also required for Skp1 glycosylation, and phyA parasites are deficient in proliferation, especially at low O2 (15).The idea that O2 availability is rate limiting for Skp1 modification was originally based on the observation that the Dictyostelium phyA phenotype mimics that of wt cells in low O2 (9). However, the majority of Skp1 is hydroxylated and glycosylated in wt cells even at low O2 levels where culmination is blocked or delayed. Further analysis of a submerged development model, in which terminal development depended on an atmosphere of 70% to 100% O2 in order to overcome the diffusion barrier posed by the water layer, showed that at atmospheric O2 levels of 5% to 21% where sporulation was blocked, unmodified Skp1 accumulated to a higher level than at permissive O2 levels (10). As Skp1 modifications are thought to be irreversible, this likely resulted from slow hydroxylation of newly synthesized Skp1. To address this in a more physiological setting, we investigated nascent Skp1 directly using metabolic labeling with [35S]Met/Cys and verified that the rate of hydroxylation of newly synthesized Skp1 polypeptide was indeed inversely proportional to O2 levels, which makes PhyA-mediated hydroxylation of Skp1 an excellent candidate for the primary O2 sensor for culmination.These modifications of Skp1 are of interest as a novel mechanism regulating the SCF ligase. Previously, we showed that hydroxylation and glycosylation of Dictyostelium Skp1 affect its conformation and promote binding to a soluble FBP, guinea pig Fbs1, in studies of purified proteins (16). Here we show that Dictyostelium Skp1 is indeed a subunit of a canonical SCF complex, as expected. The significance of undermodified Skp1 was examined via interactome analysis of Skp1 isoforms that accumulate in modification pathway mutants. Our findings revealed a lower abundance of SCF complexes than in wt cells, suggesting that Skp1 modification may promote SCF assembly and E3SCFUb ligase activities that control timely turnover of select proteins involved in developmental progression.  相似文献   

9.

Background

Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of β-amyloid (Aβ) peptides.

Methodology/Principal Findings

Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/−)/RAP(+/−) mice correlated with 30–40% increases in amyloid deposition by 9 months of age.

Conclusions/Significance

Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Aβ catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis.  相似文献   

10.
11.
Assembly studies in vitro of deletion mutants of the iron–sulfur protein into the cytochromebc 1 complex revealed that mutants localized in the extramembranous regions of the proteinwere not assembled into the complex in contrast to the efficient assembly of mutants in themembrane-spanning region. Charged amino acids located in the extramembranous 1-4 loopand the 1 helix were mutated and expressed in yeast cells lacking the gene for the iron–sulfurprotein. Mutating the charged amino acid residues H124, E125, R146, K148, and D149 aswell as V132 and W152 resulted in loss of enzymatic activity due to the loss of iron–sulfurprotein suggesting that these amino acids are required to maintain protein stability. By contrast,no loss of iron–sulfur protein accompanied the 30–50% loss of bc 1 complex activity in mutantsof three conserved alanine residues, A86, A90, and A92, suggesting that these residues maybe involved in the proposed movement of the flexible tether of the iron–sulfur proteinduring catalysis.  相似文献   

12.
13.
14.
ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-β, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSITKD THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1KD or TRAF6KD THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.  相似文献   

15.
16.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

17.
We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((Sp)-adenosine cyclic 3′:5′-monophosphorothioate ((Sp)-cAMPS)) and the other a diastereoisomeric antagonist ((Rp)-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91–244)·C-subunit, by using fluorescence spectroscopy and amide H/2H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91–244), and the effects of cAMP, (Sp)-cAMPS, and (Rp)-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (Rp)-cAMPS on amide exchange of the RIα(91–244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91–244). Surprisingly, (Rp)-cAMPS not only increased the affinity of RIα(91–244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (Rp)-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (Rp)-cAMPS-induced increase in affinity of RIα(91–244) toward the C-subunit indicates that (Rp)-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity.Cyclic AMP-dependent protein kinase (PKA)1 plays a crucial role in a plethora of cellular functions. All isoforms of PKA are composed of two catalytic (C) subunits and homodimeric regulatory (R) subunits (13). As the name implies, cAMP is a major PKA regulator (4). Much progress has been made in the last decade in delineating the molecular basis of action of cAMP. An important tactic in this endeavor has been through the comparison of the effects of cAMP with those of two phosphorothioate cAMP analogs: (Sp)-cAMPS (a cAMP mimic) and (Rp)-cAMPS (an antagonist and a diastereoisomer of (Sp)-cAMPS). Although the importance of geometry of the sulfur substitution is critical in determining the pharmacological properties of the two phosphorothioate cAMP analogs, the molecular basis for this behavior is not fully understood. To date, these comparisons have only been made using either wild-type or truncated mutants of the type Iα regulatory subunit (RIα) that are free in solution, not complexed to the C-subunit. X-ray spectroscopic examination of ligand-bound RIα(92–379) complexes reveals few differences between ligand-bound complexes, but the (Rp)-cAMPS complex is structurally “looser” with higher thermal factors than complexes formed with either cAMP or (Sp)-cAMPS (5). This is consistent with the observation that both cAMP and (Sp)-cAMPS, but not (Rp)-cAMPS, raise the urea concentration required for wild-type RIα unfolding (6). Further insight into the structural basis of cAMP action stems from NMR spectroscopic comparison of the effects of (Rp)-cAMPS, cAMP, and (Sp)-cAMPS on chemical shifts and 15N relaxation of the RIα(119–244) mutant (7). In addition to producing fewer significant chemical shift changes than either cAMP or (Sp)-cAMPS, (Rp)-cAMPS binding is associated with enhanced millisecond to microsecond time scale backbone motions of a β-turn (β2,3 loop) and around the phosphate-binding cassette (PBC) (7).Further insight into the molecular basis of actions of cAMP and its analogs should come from the analysis of ligand-bound R·C complexes. Unfortunately, the large size of even the heterodimeric R·C complex (∼95 kDa) and the difficulty of preparing (Rp)-cAMPS·R·C-subunit crystals currently preclude the use of both NMR spectroscopy and x-ray crystallography. Consequently, we took two alternative lower resolution approaches to this issue. One approach involves the use of site-directed labeling combined with fluorescence spectroscopy to examine both the effects of cAMP and its analogs on R-C subunit binding kinetics and on the conformational dynamics of RIα(91–244). RIα(91–244) includes the “A” cyclic nucleotide binding (CNB) domain, the pseudosubstrate, and linker domains and represents the minimal segments necessary for high affinity C-subunit binding (Fig. 1) (8). The other approach involves an examination of the effects of cAMP and its analogs on solvent exposure/conformational flexibility of RIα(91–244)·C-subunit complex using H/2H amide exchange measured with a combination of mass spectrometry (ESI-Q-TOF) and proteolytic fragmentation. In the first approach, fluorescein maleimide (FM) was conjugated to three cysteine substitution mutants with the substitution sites located near or within the pseudosubstrate sequence, the linker domain, or αC (R92C, T104C, and R239C, respectively) of RIα(91–244) (Fig. 1). The time-resolved fluorescence anisotropy results suggest that cAMP and (Sp)-cAMPS reduce the interaction of the RIα linker domain and αC with the two peripheral R-C interaction sites on the C-subunit (so-called Sites 2 and 3) without affecting the interaction of the pseudosubstrate sequence with the active site cleft (so-called Site 1). Because of limitations of the amide H/2H exchange experiments, only the effects of (Rp)-cAMPS on H/2H amide exchange in RIα(91–244)·C-subunit complex could be investigated. The results showed that (Rp)-cAMPS induces a relatively widespread increase in amide exchange, indicating limited unfolding and/or enhanced conformational flexibility that is propagated almost globally through the C-subunit and, at least, part of RIα. These conformational changes were accompanied by a 5-fold increase in the affinity of RIα(91–244) toward C-subunit, suggesting that, at least, some of the (Rp)-cAMPS effects are mediated by an increase in internal entropy. Finally, the (Rp)-cAMPS-induced increase in R-C affinity indicates that (Rp)-cAMPS is better described as an inverse agonist because the basal activity of the PKA holoenzyme should be decreased by (Rp)-cAMPS.Open in a separate windowFig. 1.Overview of PKA structure and cAMP analogs. A, domain organization of RIα showing the domain boundaries of RIα(91–244) where the pseudosubstrate in green is connected to CNB-A domain in blue by a linker segment. B, structure of RIα(91–244) in the C-subunit-bound conformation (Protein Data Bank code 1U7E (23)) showing the pseudosubstrate in green, linker in yellow, and helical subdomain comprising helices αN, αA, αB, and αC in blue and β-subdomain in tan. The PBC is in red. C, structure of the C·RIα(91–244) holoenzyme showing the C-subunit in tan and RIα(91–244) in blue. Sites for introduction of cysteines by site-directed mutagenesis are represented by red circles. The cAMP binding site (PBC) is in red. D, structure of cAMP showing the 2′-OH group and 3′–5′ phosphodiester bond. The exocyclic oxygens upon replacement with sulfur atoms to generate the (Sp)-cAMPS and (Rp)-cAMPS diastereomers are highlighted.  相似文献   

18.

Background

Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3β signaling pathway regulates BMAL1 protein stability and activity.

Principal Findings

GSK3β phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3β-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3β pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.

Conclusions

These findings uncover a previously unknown mechanism of circadian clock control. The GSK3β kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock.  相似文献   

19.
Alzheimer's disease (AD) is the most common form of dementia in the aged population. Early-onset familial AD (FAD) involves mutations in a gene on chromosome 21 encoding the amyloid protein precursor or on chromosomes 14 or 1 encoding genes known as presenilins. All mutations examined have been found to increase the production of amyloidogenic forms of the amyloid protein (A), a 4 kDa peptide derived from APP. Despite the remarkable progress in elucidating the biochemical mechanisms responsible for AD, little is known about the normal function of APP. A model of how APP and A are involved in pathogenesis is presented. This model may explain why certain neuronal populations are selectively vulnerable in AD. It is suggested that those neurons which more readily undergo neuritic sprouting and synaptic remodelling are more vulnerable to A neurotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号