首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

2.
GABA(A) receptors mediate fast inhibitory synaptic transmission. The transmembrane ion channel is lined by a ring of five α helices, M2 segments, one from each subunit. An outer ring of helices comprising the alternating M1, M3, and M4 segments from each subunit surrounds the inner ring and forms the interface with the lipid bilayer. The structural rearrangements that follow agonist binding and culminate in opening of the ion pore remain incompletely characterized. Propofol and other intravenous general anesthetics bind at the βM3-αM1 subunit interface. We sought to determine whether this region undergoes conformational changes during GABA activation. We measured the reaction rate of p-chloromercuribenzenesulfonate (pCMBS) with cysteines substituted in the GABA(A) receptor α1M1 and β2M3 segments. In the presence of GABA, the pCMBS reaction rate increased significantly in a cluster of residues in the extracellular third of the α1M1 segment facing the β2M3 segment. Mutation of the β2M2 segment 19' position, R269Q, altered the pCMBS reaction rate with several α1M1 Cys, some only in the resting state and others only in the GABA-activated state. Thus, β2R269 is charged in both states. GABA activation induced disulfide bond formation between β2R269C and α1I228C. The experiments demonstrate that α1M1 moves in relationship to β2M2R269 during gating. Thus, channel gating does not involve rigid body movements of the entire transmembrane domain. Channel gating causes changes in the relative position of transmembrane segments both within a single subunit and relative to the neighboring subunits.  相似文献   

3.
Etomidate is a potent general anesthetic that acts as an allosteric co-agonist at GABAA receptors. Photoreactive etomidate derivatives labeled αMet-236 in transmembrane domain M1, which structural models locate in the β+/α- subunit interface. Other nearby residues may also contribute to etomidate binding and/or transduction through rearrangement of the site. In human α1β2γ2L GABAA receptors, we applied the substituted cysteine accessibility method to α1-M1 domain residues extending from α1Gln-229 to α1Gln-242. We used electrophysiology to characterize each mutant''s sensitivity to GABA and etomidate. We also measured rates of sulfhydryl modification by p-chloromercuribenzenesulfonate (pCMBS) with and without GABA and tested if etomidate blocks modification of pCMBS-accessible cysteines. Cys substitutions in the outer α1-M1 domain impaired GABA activation and variably affected etomidate sensitivity. In seven of eight residues where pCMBS modification was evident, rates of modification were accelerated by GABA co-application, indicating that channel activation increases water and/or pCMBS access. Etomidate reduced the rate of modification for cysteine substitutions at α1Met-236, α1Leu-232 and α1Thr-237. We infer that these residues, predicted to face β2-M3 or M2 domains, contribute to etomidate binding. Thus, etomidate interacts with a short segment of the outer α1-M1 helix within a subdomain that undergoes significant structural rearrangement during channel gating. Our results are consistent with in silico docking calculations in a homology model that orient the long axis of etomidate approximately orthogonal to the transmembrane axis.  相似文献   

4.
5.
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.  相似文献   

6.
GABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs. To study the targeting of specific subtypes of GABA(A)-Rs, we used a molecularly engineered GABAergic synapse model to precisely control the GABA(A)-R subunit composition. We found that in neuron-HEK cell heterosynapses, GABAergic events mediated by α2β3γ2 receptors were very fast (rise time ~2 ms), whereas events mediated by α6β3δ receptors were very slow (rise time ~20 ms). Such an order of magnitude difference in rise time could not be attributed to the minute differences in receptor kinetics. Interestingly, synaptic events mediated by α6β3 or α6β3γ2 receptors were significantly slower than those mediated by α2β3 or α2β3γ2 receptors, suggesting a differential role of α subunit in receptor targeting. This was confirmed by differential targeting of the same δ-γ2 chimeric subunits to synaptic or extrasynaptic sites, depending on whether it was co-assembled with the α2 or α6 subunit. In addition, insertion of a gephyrin-binding site into the intracellular domain of α6 and δ subunits brought α6β3δ receptors closer to synaptic sites. Therefore, the α subunits, together with the γ2 and δ subunits, play a critical role in governing synaptic versus extrasynaptic targeting of GABA(A)-Rs, possibly through differential interactions with gephyrin.  相似文献   

7.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   

8.
BackgroundPentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range.MethodsUsing oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep “notch” approach, and used these results to correct steady-state direct activation for inhibition.ResultsCombining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA.ConclusionsOur novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.  相似文献   

9.
10.
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.  相似文献   

11.
GABAA receptors are composed predominantly of αβγ receptors, which mediate primarily synaptic inhibition, and αβδ receptors, which mediate primarily extrasynaptic inhibition. At saturating GABA concentrations, the barbiturate pentobarbital substantially increased the amplitude and desensitization of the α1β3δ receptor but not the α1β3γ2L receptor currents. To explore the structural domains of the δ subunit that are involved in pentobarbital potentiation and increased desensitization of α1β3δ currents, chimeric cDNAs were constructed by progressive replacement of γ2L subunit sequence with a δ subunit sequence or a δ subunit sequence with a γ2L subunit sequence, and HEK293T cells were co-transfected with α1 and β3 subunits or α1 and β3 subunits and a γ2L, δ, or chimeric subunit. Currents evoked by a saturating concentration of GABA or by co-application of GABA and pentobarbital were recorded using the patch clamp technique. By comparing the extent of enhancement and changes in kinetic properties produced by pentobarbital among chimeric and wild type receptors, we concluded that although potentiation of α1β3δ currents by pentobarbital required the δ subunit sequence from the N terminus to proline 241 in the first transmembrane domain (M1), increasing desensitization of α1β3δ currents required a δ subunit sequence from the N terminus to isoleucine 235 in M1. These findings suggest that the δ subunit N terminus and N-terminal portion of the M1 domain are, at least in part, involved in transduction of the allosteric effect of pentobarbital to enhance α1β3δ currents and that this effect involves a distinct but overlapping structural domain from that involved in altering desensitization.  相似文献   

12.
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.  相似文献   

13.
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50–17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.  相似文献   

14.
The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific.  相似文献   

15.
16.
17.
Abstract

The monoclonal antibody WF6 competes with acetylcholine and α-bungarotoxin (α-BGT) for binding to the Torpedo nicotinic acetylcholine receptor (nAChR) α1 subunit. Using synthetic peptides corresponding to the complete Torpedo nAChR α1 subunit, we previously mapped a continuous epitope recognized by WF6, and the prototope for α-BGT, to the sequence segment α1(181–200). Single amino acid substitution analogs have been used as an initial approach to determine the critical amino acids for WF6 and α-BGT binding. In the present study, we continue our analysis of the structural features of the WF6 epitope by comparing its cross-reactivity with synthetic peptides corresponding to the α1 subunits from the muscle nAChRs of different species, the rat brain α2, α3, α4 and α5 nAChR subtypes, and the chick brain α-BGT binding protein subunits, αBGTBP α1 and αBGTBP α2. Our results indicate that WF6 is able to cross-react with the muscle α1 subunits of different species by virtue of conservation of several critical amino acid residues between positions 190–198 of the α1 subunit. These studies further define the essential structural features of the sequence segment α1(181–200) required to form the epitope for WF6.  相似文献   

18.
The hematopoietic cell recognition sites of human fibronectin (FN) are the Arg–Gly–Asp–Ser (RGDS) sequence recognized by widely distributed integrin receptor α5β1 and the type III connecting segment (III CS) containing two cell-binding sites, designated CS1 and CS5, that are recognized by the α4β1 receptor. The C-terminal heparin-binding domain of FN (Hep II) has recently been demonstrated to support adhesion of α4β1-dependent melanoma cells [A. P. Mould and M. J. Humphries (1991)EMBO J.10, 4089–4095]. Previously we demonstrated that this region of FN mediated binding of FN to HL-60 cells (acute promyelocytic leukemia cell line) by direct interaction independently of RGD and CS1 [H. Fujitaet al.,(1995)Exp. Cell Res.217, 484–488]. In this study we have characterized a novel site in the Hep II region for binding to HL-60 cells. α4β1 and α5β1 were expressed on HL-60 cells, while α2β1 and α3β1 were not present, as shown by flow cytometry using monoclonal antibodies specific for the different integrins. Anti-α4β1 (P4C2) and anti-β1 (JB1a) antibodies inhibited binding of a 29-kDa dispase-digestive fragment of FN to HL-60 cells. This fragment contains the C-terminal heparin-binding domain of FN but lacks CS1 and CS5. Only the peptide representing the sequence from Val1866to Arg1880, designated E1, inhibited the binding of the 29-kDa fragment to HL-60 cells. The active region of this peptide was a sequence of Thr–Asp–Ile–Asp–Ala–Pro–Ser (TAI- DAPS), which is homologous to Leu–Asp–Val–Pro–Ser (LDVPS) derived from the active site of CS1. Furthermore, labeled E1 peptide directly bound to HL-60 cells. The anti-α4β1 antibody (P4C2) inhibited this interaction. These results indicate that the site of binding to hematopoietic cells is present in the Hep II region of FN and the definition of the chemical structure of FN clarifies a fundamental mechanism of cell invasion of the extracellular matrix.  相似文献   

19.
The type III connecting segment (IIICS) within fibronectin is the major binding site for the integrin α4β1. Most integrin ligands have an essential acidic residue within their integrin binding site, in IIICS this residue is hypothesized to be the aspartic acid at position 21. Alanine scanning mutagenesis was used to determine the amino acid residues within the intact IIICS domain required for interaction with α4β1. IIICS was cloned and expressed as a fusion protein with glutathione S-transferase. This recombinant form of IIICS supports the adhesion of CHO cells that express human α4β1in a cation dependent manner. Alanine scanning mutagenesis of the EILDVP sequence in recombinant IIICS demonstrated that only two of these residues are critical for adhesion of α4β1expressing cells. Mutations of leucine at position 20 and aspartic acid at position 21 to alanine significantly reduced cell adhesion. Conservative mutations of aspartic acid at position 21 to asparagine or glutamic acid also reduced the ability of the recombinant protein to support cell adhesion, although not to the same extent as the corresponding alanine replacement. Most importantly, we show that although the mutation of asp 21 impairs cell adhesion, an examination of cell adhesion as a function of time demonstrated that asp 21 is not necessary for cell adhesion through α4β1. In comparison to wild type IIICS, the asp 21 to ala mutant supported minimal adhesion at early time points (10-30 min.), but was equivalent to wild type IIICS in supporting adhesion over one hour.  相似文献   

20.
Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号