首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MRAP, melanocortin 2 (MC2) receptor accessory protein, is required for trafficking by the MC2 (ACTH) receptor. MRAP is a single transmembrane protein that forms highly unusual antiparallel homodimers. We used molecular complementation to ask where MRAP achieves dual topology. Fragments of yellow fluorescent protein (YFP) were fused to the NH2 or COOH terminus of MRAP such that YFP fluorescence could occur only in antiparallel homodimers; fluorescence was present in the endoplasmic reticulum. MRAP retained dual topology after deletion of most of the amino terminus. In contrast, deletion of residues 31-37, just NH2-terminal to the transmembrane domain, forced MRAP into a single Nexo/Ccyt orientation and blocked its ability to promote MC2 receptor trafficking and homodimerize. When the transmembrane domain of MRAP was replaced with the corresponding region from RAMP3, dual topology was retained but MRAP was inactive. Insertion of MRAP residues 29-37 conferred dual topology to RAMP3, normally in an Nexo/Ccyt orientation. When expressed with MRAPDelta1-30, MRAPDelta10-20, or MRAPDelta21-30, MC2 receptor was localized on the plasma membrane but unable to respond to ACTH. Residues 18-21 of MRAP were critical; MC2 receptor expressed with MRAP(18-21A) localized to the plasma membrane but did not bind 125I-ACTH or increase cAMP in response to ACTH. A newly identified MRAP homolog, MRAP2, lacks amino acids 18LDYI21 of MRAP and, like MRAP(18-21A), allows MC2 receptor trafficking but not signaling. MRAP2 with an LDYI insertion functions like MRAP. These results demonstrate that MRAP not only facilitates MC2 receptor trafficking but also allows properly localized receptor to bind ACTH and consequently signal.  相似文献   

2.
The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein–coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein–coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.  相似文献   

3.
MC2 (ACTH) receptors require MC2 receptor accessory protein (MRAP) to reach the cell surface. In this study, we show that MRAP has the opposite effect on the closely related MC5 receptor. In enzyme-linked immunosorbent assay and microscopy experiments, MC2 receptor was retained in the endoplasmic reticulum in the absence of MRAP and targeted to the plasma membrane with MRAP. MC5 receptor was at the plasma membrane in the absence of MRAP, but trapped intracellularly when expressed with MRAP. Using bimolecular fluorescence complementation, where one fragment of yellow fluorescent protein (YFP) was fused to receptors and another to MRAP, we showed that MC2 receptor-MRAP dimers were present at the plasma membrane, whereas MC5 receptor-MRAP dimers were intracellular. Both MC2 and MC5 receptors co-precipitated with MRAP. MRAP did not alter expression of β2-adrenergic receptors or co-precipitate with them. To determine if MRAP affects formation of receptor oligomers, we co-expressed MC2 receptors fused to YFP fragments in the presence or absence of MRAP. YFP fluorescence, reporting MC2 receptor homodimers, was readily detectable with or without MRAP. In contrast, MC5 receptor homodimers were visible in the absence of MRAP, but little fluorescence was observed by microscopic analysis when MRAP was co-expressed. Co-precipitation of differentially tagged receptors confirmed that MRAP blocks MC5 receptor dimerization. The regions of MRAP required for its effects on MC2 and MC5 receptors differed. These results establish that MRAP forms stable complexes with two different melanocortin receptors, facilitating surface expression of MC2 receptor but disrupting dimerization and surface localization of MC5 receptor.In mammals, the five members of the melanocortin (MC2) receptor family play diverse physiological roles. MC1 receptors (melanocyte-stimulating hormone receptors) control pigmentation in many animals, MC2 receptors (ACTH receptors) regulate adrenal corticosteroid synthesis, MC3 and MC4 receptors in brain influence food intake and energy expenditure, and MC5 receptors control exocrine gland secretion (1). Melanocortin receptors (MC1 through MC5) are structurally related G protein-coupled receptors that respond to agonists with an increase in cAMP. The receptors differ in their affinity for physiological agonists (α-, β-, and γ-melanocyte-stimulating hormone and ACTH) and antagonists (agouti and agouti-related protein).Unlike other melanocortin receptors, MC2 receptors are selectively regulated by ACTH. The MC2 receptor is also unusual in its requirement for an accessory protein, the MC2 receptor accessory protein (MRAP) (2). MRAP must be expressed with the MC2 receptor in order for the receptor to undergo glycosylation, traffic to the plasma membrane, bind ACTH, and stimulate adenylyl cyclase (24). Individuals with inactivating mutations of either the MC2 receptor or MRAP suffer from ACTH resistance and severe glucocorticoid deficiency (2).MRAP is a small protein with a conserved amino terminus, single membrane-spanning domain, and non-conserved carboxyl terminus that can also differ among splice variants. MRAP forms antiparallel homodimers, which are exceedingly rare structures, and it is these dimers that co-precipitate with the MC2 receptor (3). Mutagenic analysis has revealed that the carboxyl-terminal region of MRAP is not essential, but the amino-terminal and transmembrane regions are necessary for function (35). Deletion or alanine substitution of a critical four-amino acid segment, LDYI, at residues 18–21 of the mouse sequence, results in an MRAP molecule that facilitates expression of the MC2 receptor on the plasma membrane but does not allow the receptor to bind agonist or signal (4). MRAP is not required for cell surface expression of other melanocortin receptors and can inhibit expression or signaling in some cases (3, 6).The MC5 receptor was identified on the basis of its homology to other melanocortin receptors and is thought to be the ancestral ACTH (MC2) receptor (7). Analysis of MC5 receptor knock-out mice revealed that the MC5 receptor is important in controlling exocrine gland secretion (8) and behavioral responses depending on pheromones secreted by the preputial gland (9). MC2 and MC5 receptors are closely related, with 46% identity and 67% homology at the amino acid level, respectively. MC2 and MC5 receptors are both found on 3T3-L1 adipocytes and in some adipose tissues in animals (10, 11). Furthermore, MC2 and MC5 receptors are both expressed in adrenal cortex during embryonic development, when the MC5 receptor appears before the MC2 receptor (12). Mammalian MC2 and MC5 receptors are activated by different pro-opiomelanocortin peptides, responding physiologically to ACTH and melanocyte-stimulating hormone, respectively. Here we demonstrate that MC2 and MC5 receptors are also differentially regulated by MRAP, which exerts opposite effects on surface expression and dimerization of the two receptors.  相似文献   

4.
The ACTH receptor [melanocortin-2 receptor (MC2R)] is the smallest known G protein-coupled receptor (GPCR). Herein, human MC2R accessory protein (MRAP) isoforms alpha and beta, cloned from a human fetal adrenal gland, were expressed with c-Myc-tagged MC2R (Myc-MC2R) in 293/Flp recombinase target site cells by homologous recombination. Although insertion of Myc-MC2R at the plasma membrane occurred without MRAP assistance, ACTH stimulation of cAMP production was only detected in cells coexpressing MC2R with either MRAP isoform. On the other hand, a MC2R-green fluorescent protein fusion transfected with either MRAPalpha or MRAPbeta was impaired both in cell membrane localization and signaling. MRAP isoforms were also tagged with either Flag or 6xHis epitopes. In cell populations coexpressing transiently and/or stably Myc-MC2R with MRAPalpha or MRAPbeta, stimulation with ACTH induced production of cAMP with EC(50) values lower in MRAPalpha- than in MRAPbeta-expressing cells. ACTH only bound Myc-MC2R in the presence of MRAP. Higher Myc-MC2R cell surface density was observed in the presence of MRAPbeta comparatively to MRAPalpha, possibly contributing to higher ACTH binding capacity and higher maximal cAMP responses observed in MRAPbeta-expressing cells. Immunofluorescence studies indicated that MRAP isoforms were localized near the plasma membrane and in the vicinity, but not colocalized, with Myc-MC2R. In summary, through the generation of a new all-human experimental model devoid of endogenous MCRs, we present evidence that human MRAP isoforms, although not essential for MC2R localization at the plasma membrane, are essential for ACTH binding and ACTH-induced cAMP production and that they differentially regulate, although modestly, cell membrane density and functional properties of MC2R.  相似文献   

5.
Failure in obtaining expression of functional adrenocorticotropic hormone receptor (ACTHR, or melanocortin 2 receptor, MC2R) in non-adrenal cells has hindered molecular analysis of ACTH signaling pathways. Here, we ectopically expressed the mouse ACTHR in Balb/c mouse 3T3 fibroblasts to analyze ACTH signaling pathways involved in induction of fos and jun genes. Natural constitutive expression of the MC2R accessory protein (MRAP) in Balb3T3 and other mouse 3T3 fibroblasts (NIH, Swiss and 3T3-L1) renders these fibroblastic lines suitable for ectopic expression of ACTHR in its active form properly inserted into the plasma membrane at levels similar to those found in mouse Y1 adrenocortical tumor cells. The Y1 cell line is a cultured cell system well known for stably displaying normal adrenal specific metabolic pathways, ACTHR expression and ACTH functional responses. Thirty-nine sub-lines expressing ACTHR (3T3-AR transfectants) were selected for geneticin-resistance and clonally isolated after transfection of ACTHR-cDNA (in the pSVK3 mammalian plasmidial vector) into Balb3T3 fibroblasts. In addition, sixteen clonal sub-lines of Balb3T3 (3T3-0 transfectants) carrying the pSVK3 empty vector were likewise isolated. Fourteen 3T3-AR and four 3T3-0 clones were screened for response to ACTH39 in comparison with Y1 adrenocortical cells. Eight 3T3-AR clones responded to ACTH39 with activation of adenylate cyclase and induction of c-Fos protein, but the levels of, respectively, activation and induction were not strictly correlated. Other fos and jun genes were also induced by ACTH39 in 3T3-AR transfectants, which express levels of ACTHR protein similar to parental Y1 cells. Signaling pathways relevant to c-Fos induction was extensively investigated in 3 clones: 3T3-AR01 and –07 and 3T3-04. In Y1 cells, specific inhibitors (H89/PKA; PD98059/MEK; Go6983/PKC and SP600125/JNK) show that signals initiated in the ACTH/ACTHR-system activate 4 pathways to induce the c-fos gene, namely: (a) cAMP/PKA/CREB; (b) MEK/ERK1/2; (c) PKC and d) JNK1/2. In 3T3-AR transfectants, both inhibitors PD98059 and Go6983 proved completely ineffective to inhibit c-Fos induction by ACTH39, implying that MEK/ERK and PKC pathways are not involved in this process. On the other hand, SP600125 caused 85% inhibition of c-Fos induction by ACTH39 and, in addition, ACTH39 promotes JNK1/2 phosphorylation, suggesting that JNK is a major signaling pathway mediating c-Fos induction by ACTH39 in these cells. In addiction, PKA inhibitor H89 also inhibits c-Fos induction in 3T3-AR7 cells by ACTH39, implicating activation of the cAMP/PKA/CREB pathway in c-Fos induction by ACTH39. However, the cAMP derivatives db-cAMP and 8Br-cAMP, do not promote CREB phosphorylation and c-Fos induction in parental Balb3T3 and 3T3-AR transfectants, confirming previous report by others. In conclusion, expression of active ACTHR in Balb3T3 fibroblasts renders these cells responsive to ACTH with activation of cAMP/PKA/CREB and JNK pathways and, also, induction of genes from the fos and jun families. These results show that Balb 3T3-AR sublines are useful cellular systems for genetic analysis of ACTH-signaling pathways. However, activation of cAMP/PKA/CREB and JNK pathways and induction of fos and jun genes are not yet sufficient to enable ACTH for interference in morphology, migration and proliferation of Balb3T3 fibroblasts as it does in Y1 adrenocortical cells.  相似文献   

6.
Familial glucocorticoid deficiency (FGD), otherwise known as hereditary unresponsiveness to ACTH, is a rare autosomal recessive disease characterized by glucocorticoid deficiency in the absence of mineralocorticoid deficiency. Mutations of the ACTH receptor, also known as the melanocortin-2 receptor (MC2R), account for approximately 25% of FGD cases. More recently a second gene, MRAP (melanocortin-2 receptor accessory protein), was identified and found to account for a further 15-20%. MRAP encodes a small single transmembrane domain protein, which is essential in the trafficking of the MC2R to the cell surface. In this review, we will firstly summarize the clinical presentation and genetic aetiology of this condition. Secondly, we will discuss how the discovery of MRAP has enhanced our understanding of the mechanisms of ACTH/MC2R action. Finally, we will explore future developments in this field.  相似文献   

7.
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.  相似文献   

8.
9.
10.
Melanocortin system is composed of four peptide hormones namely α-, β-, -γ, and adrenocorticotropic hormone (ACTH), derived from post-translational cleavage of a polypeptide precursor ‘proopiomelanocortin (POMC).’ Among these hormones, ACTH, a 38 amino acid residue peptide fragment is an important hormone as it is involved in steroid secretion. In addition to this, to cite a few, this hormone is also known to induce variety of other effects, such as alterations in motor/sexual behavior, improvement in memory, and anti-inflammatory effects. To date, five melanocortin receptors (MC1R–MC5R) have been characterized with tissue-specific expression patterns and different binding affinities for each of the melanocortin hormones to regulate various biological functions. In the present work, three-dimensional (3D) models of MC2R and ACTH from human have been predicted, followed by docking and molecular dynamics simulation. While the 3D model of MC2R receptor has been predicted through threading approach, structure of ACTH was built based on ab initio technique. The MC2R model was later successfully docked onto the ACTH structure. Molecular dynamics (MD) simulation for 20?ns was used to compute the binding free energy of MC2R with ACTH model under implicit solvent conditions.  相似文献   

11.
The ACTH receptor, also known as the melanocortin-2 receptor (MC2R), is critical for ACTH-mediated adrenal glucocorticoid release. Human MC2R (hMC2R) has 10 cysteine residues, which are located in extracellular loops (ELs), transmembrane domains (TMs), and intracellular loops (ILs). In this study, we examined the importance of these cysteine residues in receptor function and determined their involvement in disulfide bond formation. We replaced these cysteines with serine and expressed the mutated receptors in adrenal OS3 cells, which lack endogenous MC2R. Our results indicate that four mutations, C21S in NH(2) terminus, C245S, C251S, and C253S in EL3, resulted in significant decrease both in receptor expression and receptor function. Mutation of cysteine 231 in TM6 significantly decreased ACTH binding affinity and potency. In contrast, the five other mutated receptors (C64S, C158S, C191S, C267S, and C293S) did not significantly alter ACTH binding affinity and potency. These results suggest that extracellular cysteine residue 21, 245, 251, and 253, as well as transmembrane cysteine residue 231 are crucial for ACTH binding and signaling. Further experiments suggest that a disulfide bond exists between the residue C245 and C251 in EL3. These findings provide important insights into the importance of cysteine residues of hMC2R for receptor function.  相似文献   

12.
Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His499 near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His499 is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His499 regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain.  相似文献   

13.
Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.  相似文献   

14.
The ACTH receptor, known as the melanocortin-2 receptor (MC2R), plays an important role in regulating and maintaining adrenocortical function. MC2R is a subtype of the melanocortin receptor (MCR) family and has unique characteristics among MCRs. Endogenous ACTH is the only endogenous agonist for MC2R, whereas the melanocortin peptides α-, β-, and γ-melanocyte-stimulating hormone and ACTH are full agonists for all other MCRs. In this study, we examined the molecular basis of MC2R responsible for ligand selectivity using ACTH analogs and MC2R mutagenesis. Our results indicate that substitution of Phe7 with d-Phe or d-naphthylalanine (d-Nal(2′)) in ACTH(1–24) caused a significant decrease in ligand binding affinity and potency. Substitution of Phe7 with d-Nal(2′) in ACTH(1–24) did not switch the ligand from agonist to antagonist at MC2R, which was observed in MC3R and MC4R. Substitution of Phe7 with d-Phe7 in ACTH(1–17) resulted in the loss of ligand binding and activity. Molecular analysis of MC2R indicated that only mutation of the third transmembrane domain of MC2R resulted in a decrease in d-Phe ACTH binding affinity and potency. Our results suggest that Phe7 in ACTH plays an important role in ligand selectivity and that the third transmembrane domain of MC2R is crucial for ACTH selectivity and potency.  相似文献   

15.
The orientation of signal–anchor proteins in the endoplasmic reticulum membrane is largely determined by the charged residues flanking the apolar, membrane-spanning domain and is influenced by the folding properties of the NH2-terminal sequence. However, these features are not generally sufficient to ensure a unique topology. The topogenic role of the hydrophobic signal domain was studied in vivo by expressing mutants of the asialoglycoprotein receptor subunit H1 in COS-7 cells. By replacing the 19-residue transmembrane segment of wild-type and mutant H1 by stretches of 7–25 leucine residues, we found that the length and hydrophobicity of the apolar sequence significantly affected protein orientation. Translocation of the NH2 terminus was favored by long, hydrophobic sequences and translocation of the COOH terminus by short ones. The topogenic contributions of the transmembrane domain, the flanking charges, and a hydrophilic NH2-terminal portion were additive. In combination these determinants were sufficient to achieve unique membrane insertion in either orientation.  相似文献   

16.
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe6, Thr7, and Leu10, and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys6-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys7-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys10-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.  相似文献   

17.
The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in the C-terminal region in addition to a POMC gene lacking gamma-MSH. The Fugu genome contains single copies of four MCRs, whereas the MC3R is missing. The MC2R and MC5R are found in tandem and remarkably contain one and two introns, respectively. We suggest that these introns were inserted through a reverse splicing mechanism into the DRY motif that is widely conserved through GPCRs. We were able to assemble large blocks around the MCRs in Fugu, showing remarkable synteny with human chromosomes 16 and 18. Detailed pharmacological characterization showed that ACTH had surprisingly high affinity for the Fugu MC1R and MC4R, whereas alpha-MSH had lower affinity. We also showed that the MC2R gene in Fugu codes for an ACTH receptor, which did not respond to alpha-MSH. All the Fugu receptors were able to couple functionally to cAMP production in line with the mammalian orthologs. The anatomical characterization shows that the MC2R is expressed in the brain in addition to the head-kidney, whereas the MC4R and MC5R are found in both brain regions and peripheral tissues. This is the first comprehensive genomic and functional characterization of a GPCR family within the Fugu genome. The study shows that some parts of the MC system are highly conserved through vertebrate evolution, such as regions in POMC coding for ACTH, alpha-MSH, and beta-MSH, the C-terminal region of AGRP, key binding units within the MC1R, MC2R, MC4R, and MC5R, synteny blocks around the MCRs, pharmacological properties of the MC2R, whereas other parts in the system are either missing, such as the MC3R and gamma-MSH, or different as compared to mammals, such as the affinity of ACTH and MSH peptides to MC1R and MC4R and the anatomical expression pattern of the MCRs.  相似文献   

18.
J. Zhang  J. Li  C. Wu  Z. Hu  L. An  Y. Wan  C. Fang  X. Zhang  J. Li  Y. Wang 《Animal genetics》2020,51(5):694-706
In humans and mice, melanocortin receptor 4 (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) can form a complex and control energy balance, thus regulating body weight and obesity. In pigs, a missense variant (p.Asp298Asn) of MC4R has been suggested to be associated with growth and fatness; however, the effect of Asp298Asn substitution on MC4R function is controversial, limiting its application in animal breeding. Here we examined the effect of this polymorphism on MC4R constitutive activity, cell surface expression and signaling, and its interaction with MRAP2 in pigs. We found that: (i) both pig MC4RAsp and MC4RAsn can be activated by its ligands (α-MSH and ACTH) and stimulate cAMP/PKA signaling pathway, as detected by pGL3–CRE–luciferase reporter assay, indicating that, like pMC4RAsp, pMC4RAsn is coupled to the cAMP/PKA signaling pathway; (ii) compared with pMC4RAsp, pMC4RAsn loses the basal constitutive activity and shows a decreased surface expression, as detected by dual-luciferase reporter assay and Nano-HiBiT system; (iii) as in other vertebrates, both pMC4RAsp and pMC4RAsn can interact with pMRAP2, thus decreasing receptor surface expression and enhancing ligand sensitivity, although, in contrast to pMC4RAsp, the basal constitutive activity of pMC4RAsn cannot be affected by pMRAP2; and (iv) RNA-seq data analysis revealed a co-expression of MC4R and MRAP2 in pig hypothalamus. Taken together, our data provide convincing evidence that Asp298Asn substitution decreases the constitutive activity and cell surface expression of MC4R or MC4R–MRAP2 complex, which may affect energy balance and be a valuable selection marker for breeding programs in pigs.  相似文献   

19.
7TM receptors are easily fused to proteins such as G proteins and arrestin but because of the fact that their terminals are found on each side of the membrane they cannot be joined directly in covalent dimers. Here, we use an artificial connector comprising a transmembrane helix composed of Leu-Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the β2-adrenergic and the NK1 receptors, which normally do not dimerize with each other, were expressed surprisingly well at the cell surface, where they bound ligands and activated signal transduction in a manner rather similar to the corresponding wild-type receptors. The concatameric heterodimers internalized upon stimulation with agonists for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse other membrane proteins.  相似文献   

20.
Voltage-dependent orientation of membrane proteins   总被引:1,自引:0,他引:1  
In order to study the influence of electrostatic forces on the disposition of proteins in membranes, we have examined the interaction of a receptor protein and of a membrane-active peptide with black lipid membranes. In the first study we show that the hepatic asialoglycoprotein receptor can insert spontaneously into lipid bilayers from the aqueous medium. Under the influence of a trans-positive membrane potential, the receptor, a negatively charged protein, appears to change its disposition with respect to the membrane. In the second study we consider melittin, an amphipathic peptide containing a generally hydrophobic stretch of 19 amino acids followed by a cluster of four positively charged residues at the carboxy terminus. The hydrophobic region contains two positively charged residues. In response to trans-negative electrical potential, melittin appears to assume a transbilayer position. These findings indicate that electrostatic forces can influence the disposition, and perhaps the orientation, of membrane proteins. Given the inside-negative potential of most or all cells, we would expect transmembrane proteins to have clusters of positively charged residues adjacent to the cytoplasmic ends of their hydrophobic transmembrane segments, and clusters of negatively charged residues just to the extracytoplasmic side. This expectation has been borne out by examination of the few transmembrane proteins for which there is sufficient information on both sequence and orientation. Surface and dipole potentials may similarly affect the orientation of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号