首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The characteristics of uridine transport were studied in basolateral plasma membrane vesicles isolated from rat liver. Uridine was not metabolized under transport measurement conditions and was taken up into an osmotically active space with no significant binding of uridine to the membrane vesicles. Uridine uptake was sodium dependent, showing no significant stimulation by other monovalent cations. Kinetic analysis of the sodium-dependent component showed a single system with Michaelis-Menten kinetics. Parameter values were K M 8.9 m and V max 0.57 pmol/mg prot/sec. Uridine transport proved to be electrogenic, since, firstly, the Hill plot of the kinetic data suggested a 1 uridine: 1 Na+ stoichiometry, secondly, valinomycin enhanced basal uridine uptake rates and, thirdly, the permeant nature of the Na+ counterions determined uridine transport rates (SCN > NO 3 > Cl > SO 4 2– ). Other purines and pyrimidines cis-inhibited and trans-stimulated uridine uptake.This work has been partially supported by grant PM90-0162 from D.G.I.C.Y.T. (Ministerio de Educación y Ciencia, Spain). B.R.-M. is a research fellow supported by the Nestlé Nutrition Research Grant Programme.  相似文献   

2.
Proton-coupled lactate transport across the basolateral membrane of rat jejunal enterocyte was studied using well purified membrane vesicles. L-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP and by pCMBS; unlabelled L-lactate causes a strong inhibition, whilst furosemide is uneffective. The H+ gradient-dependent stimulation of L-lactate uptake is significantly inhibited also by SCN: this finding could explain results recently reported in the literature in which H+-lactate symport was not evidenced in basolateral membranes from rat jejunum.  相似文献   

3.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

4.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

5.
The mechanism of HCO3- translocation across the proximal tubule basolateral membrane was investigated by testing for Na+-HCO3- cotransport using isolated membrane vesicles purified from rat renal cortex. As indicated by 22Na+ uptake, imposing an inwardly directed HCO3- concentration gradient induced the transient concentrative accumulation of intravesicular Na+. The stimulation of basolateral membrane vesicle Na+ uptake was specifically HCO3(-)-dependent as only basolateral membrane-independent Na+ uptake was stimulated by an imposed hydroxyl gradient in the absence of HCO3-. No evidence for Na+-HCO3- cotransport was detected in brush border membrane vesicles. Charging the vesicle interior positive stimulated net intravesicular Na+ accumulation in the absence of other driving forces via a HCO3(-)-dependent pathway indicating the flow of negative charge accompanies the Na+-HCO3- cotransport event. Among the anion transport inhibitors tested, 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid demonstrated the strongest inhibitor potency at 1 mM. The Na+-coupled transport inhibitor harmaline also markedly inhibited HCO3- gradient-driven Na+ influx. A role for carbonic anhydrase in the mechanism of Na+-HCO3- cotransport is suggested by the modest inhibition of HCO3- gradient driven Na+ influx caused by acetazolamide. The imposition of Cl- concentration gradients had a marked effect on HCO3- gradient-driven Na+ influx which was furosemide-sensitive and consistent with the operation of a Na+-HCO3- for Cl- exchange mechanism. The results of this study provide evidence for an electrogenic Na+-HCO3- cotransporter in basolateral but not microvillar membrane vesicles isolated from rat kidney cortex. The possible existence of an additional basolateral membrane HCO3(-)-translocating pathway mediating Na+-HCO3- for Cl- exchange is suggested.  相似文献   

6.
The ontogeny of glutamine uptake by jejunal basolateral membrane vesicles (BLMV) was studied in suckling and weanling rats and the results were compared with adult rats. Glutamine uptake was found to represent a transport into an osmotically active space and not mere binding to the membrane surface. Temperature dependency indicated a carrier-mediated process with optimal pH of 7.0. Transport of glutamine was Na+ (out greater than in) gradient dependent with a distinct "overshoot" phenomenon. The magnitude of the overshoot was higher in suckling compared with weanling rats. The uptake kinetics and inhibition profile indicated the existence of two major transport pathways. A Na(+)-dependent system correlated with System A showed tolerance to System N and System ASC substrates, and a Na(+)-independent system similar to the classical L system that favors leucine and BCH. The Vmax for the Na(+)-dependent system was higher in suckling compared with weanling and adult rats. The Vmax for the Na(+)-dependent system was 0.86 +/- 0.17, 0.64 +/- 0.8, and 0.41 +/- 0.9 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. The Vmax for the Na(+)-independent system was 0.68 +/- 0.08, 0.50 +/- 0.03, and 0.24 +/- 0.03 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. We conclude that glutamine uptake undergoes developmental changes consistent with more activity and/or number of glutamine transporters during periods of active cellular proliferation and differentiation.  相似文献   

7.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

8.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

9.
Inside-out vesicles prepared with basolateral plasma membranes from rat kidney proximal tubular cells can accumulate Na+ actively in two ways. Mode 1, which is K+-independent, is ouabain-insensitive and is inhibited by furosemide and mode 2, which is K+-dependent, is inhibited by ouabain and is insensitive to furosemide. The presence of Mg2+ and ATP in the incubation medium is essential for both modes of Na+ uptake to proceed and in both cases, the nucleotide is hydrolyzed during the process. These results are consistent with the idea of the existence, in these membranes, of two Na+ pumps: one, which can work in the absence of K+ (Na+ pump) and another, which needs K+ to work (Na+ + K+ pump).  相似文献   

10.
We have previously reported that ATP-inhibitable K+channels, in vesicles derived from the basolateral membrane ofNecturus maculosus small intestinal cells, exhibit volumeregulatory responses that resemble those found in the intact tissueafter exposure to anisotonic solutions. We now report that increases inK+ channel activity can also be elicited by exposure ofthese vesicles to isotonic solutions containing glucose or alanine thatequilibrate across these membranes. We also demonstrate that swellingafter exposure to a hypotonic solution or an isotonic solutioncontaining alanine or glucose reduces inhibition of channel activity byATP and that this finding cannot be simply attributed to dilution ofintravesicular ATP. We conclude that ATP-sensitive, stretch-activated K+ channels may be responsible for the well-establishedincrease in basolateral membrane K+ conductance ofNecturus small intestinal cells after the addition of sugarsor amino acids to the solution perfusing the mucosal surface, and wepropose that increases in cell volume, resulting in membrane stretch,decreases the sensitivity of these channels to ATP.

  相似文献   

11.
Summary The ATP-dependent Ca2+ transport activity (T. Takuma, B.L. Kuyatt and B.J. Baum,Biochem. J. 227:239–245, 1985) exhibited by inverted basolateral membrane vesicles isolated from rat parotid gland was further characterized. The activity was dependent on Mg2+. Phosphate (5mm), but not oxalate (5mm), increased maximum Ca2+ accumulation by 50%. Half-maximal Ca2+ transport was achieved at 70nm Ca2+ in EGTA-buffered medium while maximal activity required >1 m Ca2+ (V max=54 nmol/mg protein/min). Optimal rates of Ca2+ transport were obtained in the presence of KCl, while in a KCl-free medium (mannitol or sucrose) 40% of the total activity was achieved, which could not be stimulated by FCCP. The initial rate of Ca2+ transport could be significantly altered by preimposed membrane potentials generated by K+ gradients in the presence of valinomycin. Compared to the transport rate in the absence of membrane potential, a negative (interior) potential stimulated uptake by 30%, while a positive (interior) potential inhibited uptake. Initial rates of Ca2+ uptake could also be altered by imposing pH gradients, in the absence of KCl. When compared to the initial rate of Ca2+ transport in the absence of a pH gradient, pH i =7.5/pH o =7.5; the activity was 60% higher in the presence of an outwardly directed pH gradient, pH i =7.5/pH o =8.5; while it was 80% lower when an inwardly directed pH gradient was imposed, pH i =7.5/pH o =6.2. The data show that the ATP-dependent Ca2+ transport in BLMV can be modulated by the membrane potential, suggesting therefore that there is a transfer of charge into the vesicle during Ca2+ uptake, which could be compensated by other ion movements.  相似文献   

12.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

13.
Basolateral membranes from rat jejunal enterocytes have been obtained by self-orienting Percoll-gradient centrifugation. Bicarbonate and L-glucose uptake into osmotically active basolateral membrane vesicles has been studied by a rapid filtration technique. In closed vessels and at pH 8.2 the uptake kinetics of both [14C]bicarbonate and L[3H]glucose have been followed for 30 min at 18 degrees C. Bicarbonate uptake seems to be fast and in efflux experiments SITS and DIDS effect is negligible. This work demonstrates that it is possible to determine bicarbonate flux across basolateral membrane vesicles at pH and temperature values close to usual experimental conditions.  相似文献   

14.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

15.
P Y Chen  A S Verkman 《Biochemistry》1988,27(2):655-660
The mechanisms for Cl transport across basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were examined by using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The transporters studied included Cl/base exchange, Cl/base/Na cotransport, K/Cl cotransport, and Cl conductance. Initial rates of chloride influx (JCl) were determined from the measured time course of SPQ fluorescence in BLMV following inwardly directed gradients of Cl and gradients of other ions and/or pH. For a 50 mM inwardly directed Cl gradient in BLMV which were voltage and pH clamped (7.0) using K/valinomycin and nigericin, JCl was 0.80 +/- 0.14 nmol S-1 (mg of vesicle protein)-1 (mean +/- SD, n = 8 separate preparations). In the absence of Na and CO2/HCO3 in voltage-clamped BLMV, JCl increased 56% +/- 5% in response to a 1.9 pH unit inwardly directed H gradient; the increase was further enhanced by 40% +/- 3% in the presence of CO2/HCO3 and inhibited 30% +/- 8% by 100 microM dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na gradients did not increase JCl in the absence of CO2/HCO3; however, an outwardly directed Na gradient in the presence of CO2/HCO3 increased JCl by 31% +/- 8% with a Na KD of 7 +/- 2 mM. These results indicate the presence of Cl/OH and Cl/HCO3 exchange, and Cl/HCO3 exchange trans-stimulated by Na. There was no significant effect of K gradients in the presence or absence of valinomycin, suggesting lack of significant K/Cl cotransport and Cl conductance under experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Transport of the antifolate cancer drug methotrexate was studied in vesicles isolated from the basolateral membrane of rat liver. Transport of methotrexate by basolateral membrane vesicles (BLMVs) was mostly via uptake into an osmotically active intravesicular space, with some binding (approximately 9%), as shown by initial uptake studies and by varying medium osmolarity with increasing concentrations of sucrose. Methotrexate transport was linear for the first 20 s of incubation. Transport was not affected by imposition of a Na+ gradient across the vesicular membrane. Transport of methotrexate displayed a broad pH optimum: at an intravesicular pH of 7.5, the initial rate of uptake was not significantly different at extravesicular pH values ranging from 5.5 to 7.5, but uptake was less at extravesicular pH of 5.0 or 8.0. Methotrexate transport was saturable: Km = 0.15 +/- 0.05 microM and Vmax = 11.4 +/- 1.1 pmol 10 s-1 mg-1 protein. Methotrexate uptake into BLMVs was not inhibited by 5-methyltetrahydrofolate nor by 5-formyltetrahydrofolate but was weakly inhibited by folic acid in a concentration-dependent manner. Uptake was also inhibited by anion-exchange inhibitor 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid (DIDS), and by the structurally unrelated anions ATP, ADP, Cl-, SO4(2-), and oxalate2-. Adenosine (no negative charge) had no effect on transport. When vesicles were preloaded with anions (ADP, SO4(2-), oxalate2-) such that an anion gradient existed from the intra- to the extravesicular compartment, and methotrexate uptake was measured, no stimulation of uptake was seen. Methotrexate uptake into rat liver BLMVs was electrogenic as shown by stimulation of the initial rate of uptake by a valinomycin-imposed K+ diffusion potential across the vesicular membrane. These results suggest that methotrexate is transported into the hepatocyte across the basolateral membrane by an electrogenic, multispecific anion carrier system.  相似文献   

17.
The mechanism of exit of folate from the enterocyte, i.e. transport across the basolateral membrane, is not known. In this study we examined, using basolateral membrane vesicles, the transport of folic acid across the basolateral membrane of rat intestine. Uptake of folic acid by these vesicles represents transport of the substrate into the intravesicular compartment and not binding to the membrane surface. The rate of folic acid transport was linear for the first 1 min of incubation but decreased thereafter, reaching equilibrium after 5 min of incubation. The transport of folic acid was: (1) saturable as a function of concentration with an apparent Km of 0.6 +/- 0.17 microM and Vmax. of 1.01 +/- 0.11 pmol/30 s per mg of protein; (2) inhibited in a competitive manner by the structural analogues 5-methyltetrahydrofolate and methotrexate (Ki = 2 and 1.4 microM, respectively); (4) electroneutral; (5) Na+-independent; (6) sensitive to the effect of the anion exchange inhibitor 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS). These data indicate the existence of a carrier-mediated transport system for folic acid in rat intestinal basolateral membrane and demonstrate that the transport process is electroneutral, Na+-independent and sensitive to the effect of anion exchange inhibition.  相似文献   

18.
Effect of inorganic anions on p-amino[3H]hippurate transport in renal basolateral membranes has been studied using the vesicles preloaded with unlabeled p-aminohippurate (countertransport condition). The uptake of p-amino[3H]hippurate was stimulated by the outward gradient of unlabeled p-aminohippurate and the labeled substrate was accumulated into the vesicles against its concentration gradient in the presence of Cl-. The substitution of SCN- and SO4(2-) for Cl- in both sides of the vesicles depressed the initial rate and the overshoot magnitude of p-amino[3H]hippurate uptake. These results suggest that Cl- may play an important role for the carrier-mediated transport system of organic anion in renal basolateral membranes.  相似文献   

19.
We examined the mechanism of prostaglandin E2 transport in rabbit renal basolateral membrane vesicles which were predominantly oriented right-side-out. In the presence of an inwardly directed H+ gradient, the initial rate of uptake was markedly accelerated and the influx of prostaglandin E2 resulted in a transient accumulation (overshoot) above the equilibrium value. Both H+-independent and H+-stimulated prostaglandin E2 uptake were shown to be insensitive to valinomycin-induced K+ diffusion potentials. Intravesicular probenecid inhibited the pH gradient-stimulated uptake of prostaglandin E2 but did not affect the pH-stimulated uptake of thiocyanate and acetate which enter membranes via ionic and nonionic diffusion, respectively. Finally, the existence of a Na+ cotransport or of a K+ antiport pathway for prostaglandin E2 could not be demonstrated. Thus, these data demonstrate the presence of an electrically neutral H+-prostaglandin E2 cotransport or OH- -prostaglandin E2 antiport mechanism in the basolateral membrane of the rabbit proximal tubule.  相似文献   

20.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号