首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, neuroprotective significance of ellagic acid (EA, a polyohenol) was explored by primarily studying its antioxidant and antiapoptotic potential against arsenic trioxide (As2O3)‐induced toxicity in SH‐SY5Y human neuroblastoma cell lines. The mitigatory effects of EA with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. Pretreatment of SH‐SY5Y cells with EA (10 and 20 μM) for 60 min followed by exposure to 2 μM As2O3 protected the SH‐SY5Y cells against the harmful effects of the second. Also, EA pre‐treated groups expressed improved viability, repaired DNA, reduced free radical generation, and maintained altered mitochondrial membrane potential than those exposed to As2O3 alone. EA supplementation also inhibited As2O3‐induced cytochrome c expression that is an important hallmark for determining mitochondrial dynamics. Thus, the current investigations are more convinced for EA as a promising candidate in modulating As2O3‐induced mitochondria‐mediated neuronal toxicity under in vitro system.  相似文献   

2.
Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that human dopaminergic neurons have a particular sensitivity to gp120-induced damage, manifested as reduced function (decreased dopamine uptake), morphological changes, and reduced viability. Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes. Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model, which contains dopaminergic neurons, microglia, and astrocytes, we were able to show that the CB1/CB2 agonist WIN55,212-2 blunts gp120-induced neuronal damage as measured by dopamine transporter function, apoptosis and lipid peroxidation; these actions were mediated principally by the CB2 receptor. Adding supplementary human microglia to our cultures enhances gp120-induced damage; WIN55,212-2 is able to alleviate this enhanced damage. Additionally, WIN55,212-2 inhibits gp120-induced superoxide production by purified human microglial cells, inhibits migration of human microglia towards supernatants generated from gp120-stimulated human mesencephalic neuronal/glial cultures and reduces chemokine and cytokine production from the human mesencephalic neuronal/glial cultures. These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia.  相似文献   

3.
We tested here the hypothesis that the pharmacological modulation of the mitochondrial Na+/Ca2+ exchanger (mNCX) could be a new neuroprotective strategy to rescue stressed vulnerable neurons from death. We used rat hippocampal slices incubated with veratridine to cause neuronal death through a mechanism involving Na+ and Ca2+ overload. CGP37157 (CGP), an inhibitor of the mNCX, rescued veratridine vulnerable neurons from death, showing an EC50 of 5 μM. This neuroprotection was associated to mitigation of veratridine-elicited overproduction of free radicals and to inhibition of the p38 MAPK-linked apoptotic pathway. These results suggest that the mNCX could become a new target to develop compounds with potential therapeutic neuroprotective actions in neurodegenerative diseases.  相似文献   

4.
Ammonia is a neurotoxin that is implicated in the CNS dysfunction associated with hepatic encephalopathy, urea cycle disorders, Reye’s syndrome and other neurological conditions. While in vivo studies suggest that astrocytes are the principal target of ammonia toxicity, recent in vitro investigations suggest that neurons may also be directly affected by ammonia. To further examine the issue of neural cell sensitivity to ammonia, pure rat cortical neuronal cultures, as well as co-cultures of neurons and astrocytes, were exposed to 5 mM NH4Cl for 48 h. Cultures were examined for morphological changes by light microscopy, measures of cell death, free radical production and changes in the mitochondrial inner membrane potential. Ammonia caused extensive degenerative changes in pure cultured neurons, while such neuronal changes were minor in the co-cultures. Similarly, processes of pure cultured neurons displayed a significant loss of the mitochondrial inner membrane potential, as compared to neurons in co-cultures. Cell death (LDH release) in ammonia-treated neuronal cultures was twice as great as untreated controls, while in co-cultures ammonia did not significantly increase cell death. Free radical production at 3 min was increased (69%, P<0.05) in pure neuronal cultures but not in co-cultures. The neuroprotective effects observed in co-cultures may have been mediated by the astrocyte’s ability to scavenge free radicals, by their detoxification of ammonia and/or by their neurotrophic actions. The neuroprotective action of astrocytes may explain the failure to detect significant pathological changes in neurons in ammonia toxicity in vivo. Special issue dedicated to Dr. Bernd Hamprecht.  相似文献   

5.
The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this process.  相似文献   

6.
7.

Background

Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays.

Methodology/Principal Findings

We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach.

Conclusion

Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.  相似文献   

8.
Obesity is a key contributing risk factor to cardiovascular disease, certain cancers, and diabetes. Much effort has being made to investigate potential inhibitors against lipase from natural products. The ethyl acetate (EA) extract of Ecklonia cava (EC) were tested for their ability to inhibit pancreatic lipase activity in vitro. The 22 sub-fractions from EA extract were separated using silica gel column chromatography. Among the sub-fractions, the EA6 sub-fraction exhibited the highest inhibitory activity. Dieckol compound was isolated from the EA6 sub-fraction, which inhibited the lipase activity in a concentrationdependent manner with IC50 value at 0.26 mg/mL. These results suggest that EC has potential as a natural antiobesity agent.  相似文献   

9.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   

10.
Oxidative stress is believed to contribute to neurodegeneration following ischemic injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of curcumin (Cur) on neuronal death of hippocampal CA1 neurons following transient forebrain ischemia in rat. Treatment of Cur (200 mg/kg/day, i.p.) at three different times (immediately, 3 h and 24 h after ischemia) significantly (P<0.01) reduced neuronal damage 7 days after ischemia. Also, treatment of ischemic rats with Cur decreased the elevated levels of MDA and increased GSH contents, catalase and SOD activities to normal levels. In the in vitro, Cur was as potent as antioxidant (IC50 = 1 μM) as butylated hydroxytoluene. The present study demonstrates that curcumin treatment attenuates forebrain ischemia-induced neuronal injury and oxidative stress in hippocampal tissue. Thus treatment with curcumin immediately or even delayed until 24 h may have the potential to be used as a protective agent in forebrain ischemic insult in human.  相似文献   

11.
Neurological disorders affect millions of people causing behavior-cognitive disabilities. Nowadays they have no effective treatment. Human erythropoietin (hEPO) has been clinically used because of its neurotrophic and cytoprotective properties. However, the erythropoietic activity (EA) should be considered as a side effect. Some analogs like non-sialylated EPO, carbamylated EPO, or EPO peptides have been developed showing different weaknesses: erythropoiesis preservation, low stability, potential immunogenicity, or fast clearance. Herein, we used a novel strategy that blocks the EA but preserves hEPO neurobiological actions. N-glycoengineering was accomplished to add a new glycosylation site within the hEPO sequence responsible for its EA. hEPO-derivatives were produced by CHO.K1 cells, affinity-purified and functionally analyzed studying their in vitro and in vivo EA, their in vitro neuronal plasticity in hippocampal neurons and their neuroprotective action by rescuing hippocampal neurons from apoptosis. Muteins Mut 45_47 (K45 > N45 + N47 > T47), Mut 104 (S104 > N104), and Mut 151_153 (G151 > N151 + K153 > T153) lost their EA but preserved their neuroprotection activity and enhanced neuroplasticity more efficiently than hEPO. Interestingly, Mut 45_47 resulted in a promising candidate to explore as neurotherapeutic considering not only its biopotency but also its pharmacokinetic potential due to the hyperglycosylation.  相似文献   

12.
E-3,4-Dihydroxy styryl aralkyl ketones as well as their 3,4-diacetylated derivatives as the analogues of neuroprotective agent CAPE were designed and synthesized for improving stability and lipid solubility. The neuroprotective activities of target compounds 10ag and 11ag were tested by three models in vitro, including 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, neuronal protecting effect against damage induced by H2O2 in PC12 cells and nitric oxide suppression effect in BV2 microglial cells. The results demonstrated that compounds 10f and 11f exhibited the most potent neuroprotective effect against oxidative stress and inflammation, which is higher than that of the lead compound CAPE.  相似文献   

13.

Background

Death due to cerebral stroke afflicts a large number of neuronal populations, including glial cells depending on the brain region affected. Drugs with a wide cellular range of protection are needed to develop effective therapies for stroke. Human alpha 1-antitrypsin (hAAT) is a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic and immunoregulatory activities. This study aimed to test whether hAAT can protect different kind of neurons and glial cells after the oxygen and glucose deprivation (OGD).

Methods

Addition of hAAT to mouse neuronal cortical, hippocampal and striatal cultures, as well as glial cultures, was performed 30?min after OGD induction and cell viability was assessed 24?h later. The expression of different apoptotic markers and several inflammatory parameters were assessed by immunoblotting and RT-PCR.

Results

hAAT had a concentration-dependent survival effect in all neuronal cultures exposed to OGD, with a maximal effect at 1–2?mg/mL. The addition of hAAT at 1?mg/mL reduced the OGD-mediated necrotic and apoptotic death in all neuronal cultures. This neuroprotective activity of hAAT was associated with a decrease of cleaved caspase-3 and an increase of MAP2 levels. It was also associated with a reduction of pro-inflammatory cytokines protein levels and expression, increase of IL-10 protein levels and decrease of nuclear localization of nuclear factor-kappaB. Similar to neurons, addition of hAAT protected astrocytes and oligodendrocytes against OGD-induced cell death.

Conclusions

Human AAT protects neuronal and glial cells against OGD through interaction with cytokines.

General significance

Human AAT could be a good therapeutic neuroprotective candidate to treat ischemic stroke.  相似文献   

14.
Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na+-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.  相似文献   

15.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

16.
17.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   

18.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   

19.
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against H2O2-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of H2O2-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.  相似文献   

20.
Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1–42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ9-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1–42. Aβ1–42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号