首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal ischemia and reperfusion (I/R) is extensively involved in ocular diseases, causing retinal ganglion cell (RGCs) death resulting in visual impairment and blindness. Homer1a is considered as an endogenous neuroprotective protein in traumatic brain injury. However, the roles of Homer1a in RGCs I/R injury have not been elucidated. The present study investigated the changes in expression and effect of Homer1a in RGCs both in vitro and in vivo after I/R injury using Western blot, TUNEL assay, gene interference and overexpression, and gene knockout procedures. The levels of Homer1a and phosphorylated Erk (p-Erk) increased in RGCs and retinas after I/R injury. Upregulation of Homer1a in RGCs after I/R injury decreased the level of p-Erk, and mitigated RGCs apoptosis. Conversely, downregulation of Homer1a increased the level of p-Erk, and augmented RGCs apoptosis. Furthermore, inhibition of the p-ERK reduced RGCs apoptosis, and increased the expression of Homer 1a after I/R injury. Finally, the retinas of Homer1a KO mice treated with I/R injury had significantly less dendrites and RGCs, compared with Homer1a WT mice. These findings demonstrated that Homer1a may contribute to RGCs survival after I/R injury by interacting with Erk pathway.  相似文献   

2.

Aim

To examine the relationship between retinal ganglion cell loss and changes in the inner nuclear layer (INL) in optic neuritis (ON).

Methods

36 multiple sclerosis (MS) patients with a history of ON and 36 age and sex-matched controls underwent Optical Coherence Tomography. The paramacular retinal nerve fiber layer (RNFL), combined ganglion cell and inner plexiform layers (GCL/IPL) and inner nuclear layer (INL) thickness were measured at 36 points around the fovea. To remove inter-subject variability, the difference in thickness of each layer between the ON and fellow eye of each patient was calculated. A topographic analysis was conducted.

Results

The INL of the ON patients was thicker than the controls (42.9µm versus 39.6µm, p=0.002). ON patients also had a thinner RNFL (27.8µm versus 32.2µm, p<0.001) and GCL/IPL (69.3µm versus 98.1µm, p<0.001). Among the controls, there was no correlation between RNFL and GCL/IPL as well as RNFL and INL, but a positive correlation was seen between GCL/IPL and INL (r=0.65, p<0.001). In the ON group, there was a positive correlation between RNFL and GCL/IPL (r=0.80, p<0.001) but a negative correlation between RNFL and INL (r=-0.61, p<0.001) as well as GCL/IPL and INL (r=-0.44, p=0.007). The negative correlation between GCL/IPL and INL strengthened in the ON group when inter-subject variability was removed (r=-0.75, p<0.001). Microcysts within the INL were present in 5 ON patients, mainly in the superior and infero-nasal paramacular regions. While patients with microcysts lay at the far end of the correlation curve between GCL/IPL and INL (i.e. larger INL and smaller GCL/IPL compared to other patients), their exclusion did not affect the correlation (r= -0.76, p<0.001).

Conclusions

INL enlargement in MS-related ON is associated with the severity of GCL loss. This is a continuous relationship and patients with INL microcysts may represent the extreme end of the scale.  相似文献   

3.
To investigate the reliability of different methods of quantifying retinal ganglion cells (RGCs) in rat retinal sections and wholemounts from eyes with either intact optic nerves or those axotomised after optic nerve crush (ONC). Adult rats received a unilateral ONC and after 21 days the numbers of Brn3a+, βIII-tubulin+ and Islet-1+ RGCs were quantified in either retinal radial sections or wholemounts in which FluoroGold (FG) was injected 48 h before harvesting. Phenotypic antibody markers were used to distinguish RGCs from astrocytes, macrophages/microglia and amacrine cells. In wholemounted retinae, counts of FG+ and Brn3a+ RGCs were of similar magnitude in eyes with intact optic nerves and were similarly reduced after ONC. Larger differences in RGC number were detected between intact and ONC groups when images were taken closer to the optic nerve head. In radial sections, Brn3a did not stain astrocytes, macrophages/microglia or amacrine cells, whereas βIII-tubulin and Islet-1 did localize to amacrine cells as well as RGCs. The numbers of βIII-tubulin+ RGCs was greater than Brn3a+ RGCs, both in retinae from eyes with intact optic nerves and eyes 21 days after ONC. Islet-1 staining also overestimated the number of RGCs compared to Brn3a, but only after ONC. Estimates of RGC loss were similar in Brn3a-stained radial retinal sections compared to both Brn3a-stained wholemounts and retinal wholemounts in which RGCs were backfilled with FG, with sections having the added advantage of reducing experimental animal usage.  相似文献   

4.
Li  Minghang  Tian  Xiaocui  An  Ruidi  Yang  Mei  Zhang  Qian  Xiang  Fei  Liu  Hailin  Wang  Yuchun  Xu  Lu  Dong  Zhi 《Neurochemical research》2018,43(8):1703-1703
Neurochemical Research - The original version of this article unfortunately contained a mistake. The affiliation of the author Lu Xu has been submitted and published incorrectly and has been...  相似文献   

5.
6.
7.

Purpose

Retinal ischemia and reperfusion injuries (IRI) permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC) of the rat''s eye.

Methods

IRI was performed on the left eyes of rats (n = 8) with or without inhaled Argon postconditioning (25, 50 and 75 Vol%) for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours). Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.

Results

IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001). Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01), as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001). Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.

Conclusion

Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon''s possible role as a therapeutic option.  相似文献   

8.
9.

Background

It is of importance to minimize ischemia reperfusion (I/R) injury during liver operations. Reducing the inflammatory reaction is an effective way to achieve this goal. Notably, adiponectin (APN) was found to have anti-inflammatory activity in heart and renal I/R injury. Herein, we investigated the role of APN in liver I/R injury.

Methods

Wistar rats were randomized to four groups: (1) sham group; (2) I/R control group; (3) I/R+APN group; and (4) I/R+APN+AMPK inhibitor group. Liver and blood samples were collected 6h and 24h after reperfusion. Liver function and histopathologic changes were assessed. Macrophage and neutrophil infiltration was detected by immunohistochemistry staining, while pro-inflammatory cytokines and chemokines released in the liver were measured using ELISA and RT-PCR, respectively. Apoptosis was analyzed by TUNEL staining and caspase-3 expression in the liver. Downstream molecules of APN were investigated by Western blotting.

Results

Circulatory APN was down-regulated during liver I/R. When exogenous APN treatment was administered during liver I/R, alanine transaminase (ALT) and aspartate aminotransferase (AST) were decreased, and less hepatocyte necrosis was observed. Less inflammatory cell infiltration and pro-inflammatory cytokines/chemokines release were also observed in the I/R+APN group when compared with the I/R control group. APN treatment also reduced hepatocyte apoptosis, evidenced by reduced TUNEL positive cells and less caspase-3 expression in the reperfused liver. Finally, the AMPK/eNOS pathway was found to be activated by APN, and administration of an AMPK inhibitor reversed the beneficial effects of APN.

Conclusion

APN can protect the liver from I/R injury by reducing the inflammatory response and hepatocyte apoptosis, a process that likely involves the AMPK/eNOS pathway. The current study provides a potential pharmacologic target for liver I/R injury.  相似文献   

10.
原花青素对脑缺血再灌损伤大鼠模型的影响   总被引:1,自引:0,他引:1  
目的研究原花青素对脑缺血/再灌损伤(ischemia/reperfusion,I/R)大鼠神经功能评分(neurologicaldeficit score,NDS)、脑梗死体积、脑含水量等指标的药理作用。方法采用大鼠大脑中动脉阻断(middle cerebralartery occlusion,MCAO)法复制类似人类缺血性卒中的I/R损伤模型。结果该模型各时间点内均有程度不同的神经功能缺失,原花青素给药组神经功能评分明显低于对照组(P0.05),假手术组大鼠均无神经功能缺失,脑水肿情况均较对照组明显改善(P0.05),脑梗死体积与盐水对照组相比差异有显著性(P0.05),而假手术组均未见有梗死灶。结论原花青素具有一定的保护大鼠I/R后受损脑组织的作用,可供后续研究,并可为缺血性卒中使用原花青素治疗提供确凿的理论依据。  相似文献   

11.
Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cell death. Using the DBA/2J mouse model of glaucoma this investigation aims to elucidate the impact of increasing intraocular pressure on retinal ganglion cell dendrites using DBA/2J mice that express YFP throughout the retinal ganglion cells driven by Thy1 (DBA/2J.Thy1(YFP)) and DiOlistically labelled retinal ganglion cells in DBA/2J mice. Here we show retinal ganglion cell dendritic degeneration in DiOlistically labelled DBA/2J retinal ganglion cells but not in the DBA/2J.Thy1(YFP) retinal ganglion cells suggesting that a potential downregulation of Thy1 allows only ‘healthy’ retinal ganglion cells to express YFP. These data may highlight alternative pathways to retinal ganglion cell loss in DBA/2J glaucoma.  相似文献   

12.

Background/Purpose

Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration.

Methods

Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion.

Results

Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels.

Conclusions

Acupuncture and electroacupuncture at GV20 and ST36 both exercised neuroprotective actions in a rat model of MCAO, with no clear differences between groups A and EA. Therefore, acupuncture and electroacupuncture might find utility as adjunctive and complementary treatments to supplement conventional therapy for ischemic stroke.  相似文献   

13.

Purpose

To evaluate whether optic disc hemorrhages are associated with faster rates of estimated retinal ganglion cell (RGC) loss in glaucoma.

Methods

A longitudinal observational cohort study of 222 eyes of 122 patients with glaucoma recruited from the Diagnostic Innovations Glaucoma Study (DIGS) followed for an average of 3.74±0.85 years. All subjects had optical coherence tomography and standard automated perimetry during follow up. Optic disc hemorrhages were detected by masked evaluation of stereophotographs. Rates of change in estimated numbers of RGCs were determined using a previously described method. A random coefficients model was used to investigate the relationship between disc hemorrhages and rates of change in estimated RGC counts over time.

Results

19 eyes of 18 subjects had at least one disc hemorrhage during follow up. At baseline, average estimated RGC counts in eyes with and without disc hemorrhages were 677,994 cells and 682,021 cells, respectively (P = 0.929). Eyes with optic disc hemorrhages during follow-up had significantly faster rates of estimated RGC loss than eyes without disc hemorrhages (22,233 cells/year versus 10,704 cells/year, P = 0.020). The effect of disc hemorrhages on the rates of estimated RGC loss remained significant after adjusting for confounding variables.

Conclusion

Eyes with disc hemorrhages showed faster rates of RGC loss compared to eyes without disc hemorrhages. These results provide further evidence that disc hemorrhages should be considered as an indicator of increased risk for faster neural loss in glaucoma.  相似文献   

14.
目的:观察eritoran对大鼠肾脏缺血再灌注损伤模型的.方法:建立SD大鼠缺血再灌注模型,给予eritoran治疗而对照组给予生理盐水治疗,观察各组的肾功能情况、肾组织光镜病理,并采用核糖核酸酶保护测定检测肾组织炎症因子/趋化因子的表达.结果:与模型组相比,eritoran预处理可显著改善大鼠的肾功能,减轻缺血再灌注引起的肾小管损伤,减轻肾组织病变,减少肾组织单核细胞浸润并下调多种炎症因子的表达(TNF-α,IL-6,IL-1β和MCP-1).结论:本研究证实通过eritoran抑制Toll样受体4,可减轻大鼠肾脏缺血再灌注损伤中的炎症反应,减轻肾脏缺血再灌注损伤,eritoran可望成为肾脏I/R损伤的新治疗手段.  相似文献   

15.
Dynamic Characteristics of Retinal Ganglion Cell Responses in Goldfish   总被引:6,自引:4,他引:2  
A cross-correlation technique has been applied to quantify the dependence of the dynamic characteristics of retinal ganglion cell responses in goldfish on intensity, wavelength, spatial configuration, and spot size. Both theoretical and experimental evidence justify the use of the cross-correlation procedure which allows the completion of rather extensive measurements in a relatively short time. The findings indicate the following. (a) The shape of the amplitude characteristics depends on the energy per unit of time (power) falling within the center of a receptive field rather than on the intensity of the stimulus spot. For spot diameters of up to 1 mm, identical amplitude characteristics can be obtained by interchanging area and intensity. Therefore the receptor processes do not contribute to the change in the amplitude characteristics as a function of the power of the stimulus light. (b) For high frequencies the amplitude characteristics obtained as a function of power join together in a common envelope if plotted on an absolute sensitivity scale. For spontaneous ganglion cells this envelope holds over a range of three log units and the shape is identical for central and peripheral processes. (c) The amplitude characteristics of the central and peripheral processes converging to a ganglion cell are identical, irrespective of the sign (on or off) and the spectral coding of the response. Therefore we have no evidence for interneurons in the goldfish retina unique to the periphery of the receptive field.  相似文献   

16.

Background

Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model.

Methods

The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis.

Results

Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt.

Conclusion

The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.  相似文献   

17.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

18.

Purpose

Hypothermia has been shown to be neuroprotective in the therapy of ischemic stroke in the brain. To date no studies exist on the level of the inner retina and it is unclear if hypothermia would prolong the ischemic tolerance time of retinal ganglion cells, which are decisive in many ischemic retinopathies.

Methods

Bovine eyes were enucleated and stored either at 21°C or 37°C for 100 or 340 minutes, respectively. Afterwards the globes were dissected, the retina was prepared and either the spontaneous ganglion cell responses were measured or the retina was incubated as an organotypic culture for additional 24 hours. After incubation the retina was either processed for histology (H&E and DAPI staining) or real-time PCR (Thy-1 expression) was performed.

Results

Hypothermia prolonged ganglion cell survival up to 340 minutes under ischemic conditions. In contrast to eyes kept at 37°C the eyes stored at 21°C still showed spontaneous ganglion cell spiking (56.8% versus 0%), a 5.8 fold higher Thy-1 mRNA expression (not significant, but a trend) and a preserved retinal structure after 340 minutes of ischemia.

Conclusion

Hypothermia protects retinal ganglion cells against ischemia and prolongs their ischemic tolerance time.  相似文献   

19.

Purpose

To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT).

Methods

Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae.

Results

RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes.

Conclusions

In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.  相似文献   

20.
Retinal ganglion cells (RGCs) are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy) of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号