首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of changes to cold, mechanical, and heat thresholds following median nerve transection with repair by sutures (Su) or Rose Bengal adhesion (RA) were compared to sham-operated animals. Both nerve-injured groups showed a transient, ipsilateral hyposensitivity to mechanical and heat stimuli followed by a robust and long-lasting hypersensitivity (6–7 weeks) with gradual recovery towards pre-injury levels by 90 days post-repair. Both tactile and thermal hypersensitivity were seen in the contralateral limb that was similar in onset but differed in magnitude and resolved more rapidly compared to the injured limb. Prior to injury, no animals showed any signs of aversion to cold plate temperatures of 4–16?°C. After injury, animals showed cold allodynia, lasting for 7 weeks in RA-repaired rats before recovering towards pre-injury levels, but were still present at 12 weeks in Su-repaired rats. Additionally, sensory recovery in the RA group was faster compared to the Su group in all behavioural tests. Surprisingly, sham-operated rats showed similar bilateral behavioural changes to all sensory stimuli that were comparable in onset and magnitude to the nerve-injured groups but resolved more quickly compared to nerve-injured rats. These results suggest that nerve repair using a sutureless approach produces an accelerated recovery with reduced sensorimotor disturbances compared to direct suturing. They also describe, for the first time, that unilateral forelimb nerve injury produces mirror-image-like sensory perturbations in the contralateral limb, suggesting that the contralateral side is not a true control for sensory testing. The potential mechanisms involved in this altered behaviour are discussed.  相似文献   

2.
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.  相似文献   

3.
Previous studies have demonstrated that the red nucleus (RN) is involved in the regulation of neuropathic pain and plays both facilitated and inhibitory roles through different cytokines. Here, we aim to investigate the expression changes and roles of interleukin-6 (IL-6), a pleiotropic cytokine, as well as its receptor (IL-6R) in the RN of rats with neuropathic pain induced by spared nerve injury (SNI). Immunohistochemistry indicated that IL-6 and IL-6R were weakly expressed in the RN of normal rats, and were mainly co-localized with neurons and oligodendrocytes. Following SNI, the expression levels of IL-6 and IL-6R in the RN did not show obvious changes at 1 week and 2 weeks postinjury. However, both of them were significantly increased in the RN contralateral (but not ipsilateral) to the nerve ligation side at 3 weeks postinjury, and co-localized not only with neurons and oligodendrocytes, but also with numerous astrocytes. Injection of different doses of anti-IL-6 antibody (100, 250, 500 ng) into the RN contralateral to the nerve ligation side at 3 weeks postinjury dose-dependently increased the paw withdrawal threshold (PWT) of rats and alleviated SNI-induced mechanical allodynia. Conversely, injection of different doses of recombinant rat IL-6 (5.0, 10, 20 ng) into the unilateral RN of normal rats dose-dependently decreased the PWT of contralateral (but not ipsilateral) hind paw and evoked significant mechanical allodynia, which was similar to SNI-induced neuropathic allodynia. These results further support the conclusion that the RN is involved in the modulation of neuropathic pain, and suggest that IL-6 and IL-6R in the RN play a facilitated role in the later maintenance of SNI-induced neuropathic pain.  相似文献   

4.
《Phytomedicine》2014,21(5):717-723
Safranal is one of the major components of saffron and has many biological effects such as antioxidant property. The present study investigated the effects of safranal on sciatic nerve function after induction of crush injury. We also used of vitamin E as a reference potent antioxidant agent.In anesthetized rats, right sciatic nerve was crushed using a small haemostatic forceps. Functional recovery was assessed using sciatic functional index (SFI). Acetone spray and von Frey filament tests were used for neuropathic pain assay. Histopathological changes including severities of Wallerian degeneration of sciatic nerve and gastrocnemius muscle atrophy were investigated by light microscopy. Blood levels of malodialdehyde (MDA) were also measured.The SFI values were accelerated, cold and mechanical allodynia were suppressed, the severities of Wallerian degeneration and muscular atrophy were improved, and the increased MDA level was reversed with 10 consecutive days intraperitoneal injections of 0.2 and 0.8 mg/kg of safranal and 100 mg/kg of vitamin E.It is concluded that safranal and vitamin E produced same improving effects on crushed-injured sciatic nerve functions. Inhibition of oxidative stress pathway may be involved in improving effects of safranal and vitamin E on functions and histopathology of an injured peripheral nerve.  相似文献   

5.
Pharmacological treatment is a therapeutic approach to improving nerve regeneration and functional recovery after peripheral nerve crush injury. The objective of the present study was to investigate the effects of the polypeptides isolated from Achyranthes bidentata Blume (abbreviated as ABPP) on rat sciatic crush injury and to test the possible involvement of neurotrophic factors. After surgical crush injury, rats received daily intraperitoneal injection of 0.2 ml saline containing 2 mg ABPP, 1 μg nerve growth factor (NGF) or no additive. The results from walking track analysis, electrophysiological assessment and histological evaluation indicated that the repair outcomes by ABPP treatment were close to those by NGF treatment, but better than those by treatment with saline alone. The quantitative real-time RT-PCR was used to monitor the mRNA expression of growth associated protein in the crush nerves and the mRNA expression of NGF, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), tyrosine kinase (Trk)A and TrkB in the dorsal root ganglia (DRGs) at L4–L6. The mRNA expression of these genes in the crush nerve sample and DRGs sample was higher after treatment with ABPP or NGF than after treatment with saline alone. Our findings suggest that ABPP might protect peripheral nerve against crush injury through stimulating release of neurotrophic factors and the other cytokines.  相似文献   

6.
Despite immense advances in the treatment strategies, management of neuropathic pain remains unsatisfactory. Piracetam is a prototype of nootropic drugs, used to improve cognitive impairment. The present study was designed to investigate the effect of piracetam on peripheral neuropathic pain in rats. Neuropathic pain was induced by the chronic constriction injury of the sciatic nerve. Following this, piracetam was intraperitoneally administered for 2 weeks in doses of 50, 100 and 200 mg/kg, and pain was assessed by employing the behavioural tests for thermal hyperalgesia (hot plate and tail flick tests) and cold allodynia (acetone test). After the induction of neuropathic pain, significant development of thermal hyperalgesia and cold allodynia was observed. The administration of piracetam (50 mg/kg) did not have any significant effect on all the behavioural tests. Further, piracetam (100 mg/kg) also had no effect on the hot plate and tail flick tests; however it significantly decreased the paw withdrawal duration in the acetone test. Piracetam in a dose of 200 mg/kg significantly modulated neuropathic pain as observed from the increased hot plate and tail flick latencies, and decreased paw withdrawal duration (in acetone test). Therefore, the present study suggests the potential use of piracetam in the treatment of neuropathic pain, which merits further clinical investigation.  相似文献   

7.
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.  相似文献   

8.
The aim of this study was to investigate effects of intracavernous injection of adipose-derived stem cells (ADSCs) on cavernous nerve (CN) regeneration and functional status in a nerve-crush rat model. Thirty Sprague–Dawley male rats were randomly divided into three equal groups: one group underwent sham operation, while two groups underwent bilateral CN crush. Crush-injury group was treated at the time of injury with intracavernous injection of ADSCs, or injured control group with no further intervention. Erectile function was assessed by CN electrostimulation after 3 months. Penile tissue and crushed nerves were collected for histology. Three months after surgery, in the group that underwent bilateral nerve crushing with no further intervention, the functional evaluation showed a lower mean maximal intracavernous pressure (ICP) and maximal ICP per mean arterial pressure (MAP) with CN stimulation than those in the sham group. In the group with an immediate intracavernous injection of ADSCs, the mean maximal ICP and maximal ICP/MAP were significantly higher than those in the injured control group. Histologically, the group with the intracavernous injection of ADSCs had more myelinated axons of CNs and more NADPH-diaphorase-positive nerve fibers than the injured control group but fewer than the sham group. Intracavernous injection of ADSCs treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. These results show that the intracavernous injection of ADSCs to the site of CN-crush injury facilitates nerve regeneration and recovery of erectile function. Our research indicates that penile injection of ADSCs can improve recovery of erectile function in a rat model of neurogenic ED.  相似文献   

9.
AimsIbuprofen arginate is a highly soluble salt formed by combining racemic ibuprofen with the amino acid l-arginine. This formulation is absorbed faster, and it is safe and effective in treating many forms of mild to moderate pain. We compared the analgesic effect of ibuprofen arginate and conventional ibuprofen in rat models of pain.Main methodsMechanical and cold allodynia were assessed in the chronic constriction injury (CCI) model of neuropathic pain, and mechanical allodynia was also examined in capsaicin-injected rats (a model of central sensitization). Inflammatory hypersensitivity was assessed with the formalin test. Ibuprofen-l-arginine, ibuprofen, l-arginine or saline was administered orally on a daily basis after CCI or capsaicin injection, and the von Frey and cold plate tests were performed on days 1, 3 and 7 after CCI or capsaicin administration. In the formalin-induced inflammatory pain test, the drugs were administered 30 min before formalin injection.Key findingsIbuprofen only exerts an antinociceptive effect in the formalin model whereas ibuprofen-l-arginine exerts antinociceptive effects on both mechanical and cold allodynia induced by CCI, mechanical allodynia induced by capsaicin injection, and in phase 2 of the formalin test, exhibiting superior antinociceptive activity to ibuprofen in all these tests. l-Arginine only exerted antinociceptive effects on cold allodynia in CCI.SignificanceThese results demonstrate that ibuprofen arginate has stronger antinociceptive effects than ibuprofen in all the models used, suggesting it might improve the therapeutic management of neuropathic and inflammatory pain.  相似文献   

10.
Granulocyte colony-stimulating factor (G-CSF) demonstrates neuroprotective effects through different mechanisms, including mobilization of bone marrow cells. However, the influence of G-CSF-mediated mobilization of bone marrow-derived cells on injured sciatic nerves remains to be elucidated. The administration of G-CSF promoted a short-term functional recovery 7 days after crush injury in sciatic nerves. A double-immunofluorescence study using green fluorescent protein-chimeric mice revealed that bone marrow-derived CD34+ cells were predominantly mobilized and migrated into injured nerves after G-CSF treatment. G-CSF-mediated beneficial effects against sciatic nerve injury were associated with increased CD34+ cell deposition, vascular endothelial growth factor (VEGF) expression, and vascularization/angiogenesis as well as decreased CD68+ cell accumulation. However, cell differentiation and VEGF expression were not demonstrated in deposited cells. The results suggest that the promotion of short-term functional recovery in sciatic nerve crush injury by G-CSF involves a paracrine modulatory effect and a bone marrow-derived CD34+ cell mobilizing effect.  相似文献   

11.
Vinorine is a monoterpenoid indole alkaloid, a type of natural alkaloids. Growing reports exhibited the numerous pharmacology activities of vinorine such as anti-inflammation, anti-bacterial and anti-tumor. In this study, the effect of vinorine injection (7.5, 15 and 30 mg/kg) on motor function, sensation and nerve regeneration in sciatic nerve crush injury rat was investigated. The results of behavioral analysis, electrophysiological analysis and muscle histological analysis suggested that vinorine promoted the motor function recovery after sciatic nerve injury. The results of mechanical withdrawal thresholds assay and hot plate test demonstrated that vinorine improved the sensation recovery after sciatic nerve injury. The results of Fluoro-gold retrograde labeling, transmission electron microscope assay, toluidine blue and HE staining showed that vinorine attenuated the nerve damage caused by sciatic nerve injury and promoted the nerve regeneration. Furthermore, nerve growth factor (NGF) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway participated in the neuro-recovery effect of vinorine after crush. In conclusion, vinorine treatment accelerated the sciatic nerve regeneration, motor function recovery and sensation recovery after crush injury via regulation of NGF and ERK activity. These results suggested that vinorine is a promising agent for never injury therapy.  相似文献   

12.
Chemotherapic drugs may elicit acute or chronic peripheral neuropathies. Mirtazapine, as an antidepressant, is also used for the treatment of neuropathic pain. The current study aimed to investigate the effect of mirtazapine on the oxaliplatin-induced neuropathy in rats as well as the underlying mechanism. A neuropathy model was established in Sprague–Dawley rats by intraperitoneal (i.p.) injection of oxaliplatin 4 mg/kg twice a week for 4 weeks. The therapeutic potential of mirtazapine 10, 20, and 30 mg/kg/day per-orally for 28 consecutive days was evaluated. Subsequently, a dose of 1 mg/kg of WAY100635 i.p., a selective antagonist of 5-HT1A receptor, was preadministrated before mirtazapine 20 mg/kg/day per-orally in oxaliplatin-induced neuropathy. The behavioral tests and the expression of NMDA receptor subunit NR2B were determined. The results displayed that repeated administration of mirtazapine 20 or 30 mg/kg/day for 28 consecutive days significantly attenuated the mechanical allodynia and the up-regulation of spinal cord NR2B but not the cold hyperalgesia in rats with oxaliplatin-induced neuropathy, which was reversed by WAY100635 preadministration. Our findings suggest that oxaliplatin-induced mechanical allodynia is associated with spinal NR2B up-regulation, which may be attenuated by mirtazapine administration.  相似文献   

13.
This study examined the time course of mechanical and cold allodynia in rat hindpaw after spinal cord contusion. Hindpaw withdrawal threshold to graded von Frey hair stimulation and withdrawal frequency to acetone application were measured in rats subjected to contusions of varying severity, produced by a MASCIS impactor device with a 10 g weight dropped from 6.25, 12.5, or 25 mm. Mechanical and cold allodynia developed following the injury, and differences in the incidence of allodynia and in withdrawal threshold were significant among these groups. The least severe injury (6.25 mm) most consistently caused a decreased hindpaw threshold to mechanical stimulation and an increased withdrawal frequency to cold.  相似文献   

14.
Objectives:Whole-body vibration (WBV) is commonly used to improve motor function, balance and functional performance, but its effects on the body are not fully understood. The main objective was to evaluate the morphometric and functional effects of WBV in an experimental nerve regeneration model.Methods:Wistar rats were submitted to unilateral sciatic nerve crush and treated with WBV (4-5 weeks), started at 3 or 10 days after injury. Functional performances were weekly assessed by sciatic functional index, horizontal ladder rung walking and narrow beam tests. Nerve histomorphometry analysis was assessed at the end of the protocol.Results:Injured groups, sedentary and WBV started at 3 days, had similar functional deficits. WBV, regardless of the start time, did not alter the histomorphometry parameters in the regeneration process.Conclusions:The earlier therapy did not change the expected and natural recovery after the nerve lesion, but when the WBV starts later it seems to impair function parameter of recovery.  相似文献   

15.
This study examined the time course of mechanical and cold allodynia in rat hindpaw after spinal cord contusion. Hindpaw withdrawal threshold to graded von Frey hair stimulation and withdrawal frequency to acetone application were measured in rats subjected to contusions of varying severity, produced by a MASCIS impactor device with a 10?g weight dropped from 6.25, 12.5, or 25?mm. Mechanical and cold allodynia developed following the injury, and differences in the incidence of allodynia and in withdrawal threshold were significant among these groups. The least severe injury (6.25?mm) most consistently caused a decreased hindpaw threshold to mechanical stimulation and an increased withdrawal frequency to cold.  相似文献   

16.
Neuropathic pain is a very common dysfunction caused by several types of nerve injury. This condition leads to a variety of pathological changes in central nervous system regions related to pain transmission. It has been demonstrated that nociception is modulated by reactive oxidative species and treatments with antioxidant compounds produce antinociceptive effects. Thus, the aim of the present study was to investigate oxidative parameters in spinal and supraspinal regions following sciatic nerve transection (SNT). In behavioral assessments, animals showed mechanical allodynia and a significant functional impairment following SNT, measured by von Frey hairs test and sciatic functional index, respectively. Superoxide dismutase activity was increased 3 and 7 days following SNT in cerebral cortex and brainstem. Catalase activity was also increased in cerebral cortex 3 days after SNT. Ascorbic acid levels were decreased 7 days in the spinal cord only in SNT group. We also showed an increase in lipid peroxidation in cerebral cortex and brainstem 3 days after surgery in SNT and sham groups. These results showed that supraspinal regions also exhibit changes in antioxidant activity after SNT and demonstrate an intricate relationship among antioxidant defenses in different regions of the neuro axis related to pain transmission.  相似文献   

17.
P De Koning  W H Gispen 《Peptides》1987,8(3):415-422
The beneficial effect of short-term (8 days) melanocortin therapy on regenerating peripheral nerves is demonstrated using functional and electrophysiological tests. Following a crush lesion of the rat sciatic nerve, recovery of sensory function is monitored by assessing the responsiveness of the rat to a small electric current applied to the footsole. Recovery of motor function is assessed by means of an analysis of walking patterns. Normalization of the walking pattern reflects reinnervation of different muscle groups. The motor and H-reflex related sensory nerve conduction velocity of the regenerated nerves are longitudinally investigated in the same rats in which the recovery of motor and sensory function had been assessed previously. Functional tests show an enhanced recovery under melanocortin therapy, but in the end both saline- and melanocortin-treated rats show 100% recovery. However, when compared to the contralateral sciatic nerve, in the peptide-treated animals motor nerve conduction in the regenerated nerves has fully recovered after about 90 days following the crush lesion and the sensory conduction after about 120 days, whereas in the saline-treated rats a deficit of 20-40% in both motor and sensory conduction remains. This difference is observed even 214 days following crush.  相似文献   

18.
Brain-derived neurotrophic factor (BDNF) stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs) in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/−) received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT) were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI), and motor nerve conduction velocity (MNCV) simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/− mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/− BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/− mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.  相似文献   

19.
目的:探讨他汀类(statins)药物Simvastatin在大鼠坐骨神经损伤修复中的作用及可能的作用机制。方法:制作SD大鼠标准坐骨神经钳夹损伤(crush)模型后,分别予Simvastatin和溶媒对照干预2周。手术前后不同时间点进行趾展功能指数测定、神经电生理学、血脂水平、血清IL-6检测和组织学评价。结果:Simvastatin干预组与对照组比较,趾展功能指数在术后5d和8d显著增大(P〈0.05),足趾展开速度快;2周肌肉复合动作电位幅度高,4周神经传导速度快;组织学显示有髓神经纤维数量多,髓鞘厚,排列相对整齐。各组手术前血脂水平无差异,手术后2周均有不同程度的降低,但Simvastatin干预组总胆固醇降低程度最轻,与对照组比较有显著差异(P〈0.05);Simvastatin干预组手术后5d,血清IL-6水平明显低于对照组(P〈0.05)。结论:本研究发现,Simvastatin可能通过抑制免疫炎症反应,维持神经损伤后胆固醇的平衡,促进大鼠坐骨神经损伤的修复和再生。  相似文献   

20.
Tumor necrosis factor-α plays important roles in immune system development, immune response regulation, and T-cell-mediated tissue injury. The present study assessed the net value of anti-tumor necrosis factor-α treatment in terms of functional recovery and inhibition of hypersensitivity after peripheral nerve crush injury. We created a right sciatic nerve crush injury model using a Sugita aneurysm clip. Animals were separated into 3 groups: the first group received only a skin incision; the second group received nerve crush injury and intraperitoneal vehicle injection; and the third group received nerve crush injury and intraperitoneal etanercept (6 mg/kg). Etanercept treatment improved recovery of motor nerve conduction velocity, muscle weight loss, and sciatic functional index. Plantar thermal and von Frey mechanical withdrawal thresholds recovered faster in the etanercept group than in the control group. On day 7 after crush injury, the numbers of ED-1-positive cells in crushed nerves of the control and etanercept groups were increased compared to that in the sham-treated group. After 21 days, ED-1-positive cells had nearly disappeared from the etanercept group. Etanercept reduced expression of interleukin-6 and monocyte chemotactic and activating factor-1 at the crushed sciatic nerve. These findings demonstrate the utility of etanercept, in terms of both enhancing functional recovery and suppressing hypersensitivity after nerve crush. Etanercept does not impede the onset or progression of Wallerian degeneration, but optimizes the involvement of macrophages and the secretion of inflammatory mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号