首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-sectional areas and succinate dehydrogenase (SDH) activities of soleus muscle fibers and their spinal motoneurons in male Wistar Hannover rats were determined after 16 days of hindlimb suspension. A decreased percentage of type I fibers and an increased percentage of type I+II fibers were observed after hindlimb suspension. Cross-sectional areas of all types of fibers were smaller in the hindlimb suspended than control rats. SDH activities of all types of fibers did not change after hindlimb suspension. Numbers, cross-sectional areas, or SDH activities of spinal motoneurons did not change after hindlimb suspension. It is suggested that spinal motoneurons innervating the rat soleus muscle are not affected by decreased neuromuscular activity on Earth and that gravity itself is important for maintaining of spinal motoneuron metabolic properties.  相似文献   

2.
After 7 weeks of hypobaric-hypoxia adaptation, horseradish peroxidase was injected into the soleus muscle to label motoneurons of the spinal cord in rats. Fiber type distribution in the soleus muscle and oxidative enzyme activity of motoneurons innervating the soleus muscle were examined. Fiber type was converted from slow-twitch-oxidative (SO) to fast-twitch-oxidative-glycolytic (FOG). Oxidative enzyme activity of motoneurons (25-45 micron soma diameter) was increased. However, oxidative capacity of larger motoneurons (greater than or equal to 45 micron soma diameter) was not changed. These data suggest that the lack of increase in oxidative capacity of larger motoneurons (innervating SO units) by hypoxia secondarily causes fiber type shift from SO to FOG.  相似文献   

3.
The cell body sizes and succinate dehydrogenase (SDH) activities of motoneurons in the retrodorsolateral region of the ventral horn in the spinal cord innervating the soleus muscle in mice, rats, and cats were compared using quantitative enzyme histochemistry. There was an inverse relationship between cell body size and SDH activity of motoneurons in the three species. The mean cell body sizes of both gamma and alpha motoneuron pools were in the rank order of mice < rats < cats, while the mean SDH activities of both gamma and alpha motoneuron pools were in the rank order of mice > rats > cats. It is concluded that smaller motoneurons innervating the soleus muscle have higher SDH activities than larger motoneurons, irrespective of the species, and that motoneuron pools innervating the soleus muscle in smaller animals have smaller mean cell body sizes and higher mean SDH activities than those in larger animals.  相似文献   

4.
Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.  相似文献   

5.
The fiber number, fiber type distribution, and succinate dehydrogenase activity were investigated from the fast-twitch extensor digitorum longus muscle of male rats exposed to 7 weeks of hypobaric hypoxia. The oxidative metabolic capacity of the motoneurons in the extensor digitorum longus neuron pool was also determined from quantitative histochemical analyses. The fiber number and oxidative enzyme activity of the muscle were not changed by hypoxia. An increase in the percentage of fast-twitch oxidative (FO) fibers and a concemitant decrease in the percentage of fast-twitch (F) fibers were observed in the hypoxic muscle. On the other hand, the oxidative capacity of small-to medium-sized alpha motoneurons (25–45 m average soma diameter) was increased. The increase in the oxidative capacity of small- to medium-sized motoneurons and the type shift of muscle fibers from F (low-oxidative) to FO (high-oxidative) indicate that hypoxia enhances the oxidative capacity of particular motor units in the neuron pool.  相似文献   

6.
Spinal motoneurons innervating skeletal muscles comprised predominantly of high oxidative fibers, i.e. slow oxidative and fast oxidative glycolytic, have higher oxidative enzyme activities than motoneurons innervating skeletal muscles comprised primarily of low oxidative fibers, i.e. fast glycolytic. These findings suggest that there is a close relationship between the oxidative phosphorylation capacity of a motoneuron and of the muscle fibers that it innervates. Since some skeletal muscles become faster and less oxidative after 4-14 days of spaceflight, it might be expected that oxidative enzyme activities in some motoneurons also may decrease after spaceflight. In addition, there is significant muscular atrophy after even short spaceflights and, therefore, it may be expected that some motoneurons associated with these muscles also would atrophy. In the present paper, we examine the issue of whether spaceflight induces changes in the oxidative enzyme activity and/or size of spinal motoneurons.  相似文献   

7.
Quantitative enzyme histochemical methods have been used to determine the effect of ablation of synergists on the oxidative metabolism of the alpha-motoneurons and muscle fibers of the rat soleus. Sixty days postablation, the NADH-tetrazolium reductase (NADH-TR) activity of soleus motoneurons decreased 12.5% from 0.327 +/- 0.005 (mean +/- SE; optical density units) to 0.286 +/- 0.007. In the muscle fibers, the alpha-glycerophosphate dehydrogenase activity (glycolytic enzyme) decreased from 0.114 +/- 0.010 to 0.074 +/- 0.009, a change of 35.1%, and the NADH-TR activity decreased 21.2% from 0.348 +/- 0.018 to 0.274 +/- 0.017. In both the motoneurons and the muscle fibers, the decrease was nonspecific for all cells, although a greater effect on the cells with higher enzyme activity was observed. The decreased NADH-TR activity represents a shift in the oxidative profile of the motoneurons and muscle fibers, indicating a decreased ability to use oxidative metabolism for periods of short-term high-energy demands. Furthermore, the parallel decrease in muscle fibers and motoneurons with high NADH-TR activity (fast-twitch oxidative-glycolytic fibers and presumably also motoneurons) demonstrates the tight correlation of the NADH-TR activity between these parts of the motor unit in both control and synergist-ablated muscles.  相似文献   

8.
To determine whether long-term reductions in neuromuscular activity result in alterations in metabolic capacity, the activities of oxidative, i.e., succinate dehydrogenase (SDH) and citrate synthase (CS), and glycolytic, i.e., alpha-glycerophosphate dehydrogenase (GPD), enzyme markers were quantified in rat soleus muscles 1, 3, and 6 mo after a complete spinal cord transection (ST). In addition, the proportional content of lactate dehydrogenase (LDH) isozymes was used as a marker for oxidative and glycolytic capacities. The myosin heavy chain (MHC) isoform content of a fiber served as a marker of phenotype. In general, MHC isoforms shifted from MHC1 toward MHC2, particularly MHC2x, after ST. Mean SDH and CS activities were higher in ST than control at all time points. The elevated SDH and CS activities were indicative of an enhanced oxidative capacity. GPD activities were higher in ST than control rats at all time points. The increase in activity of SDH was larger than GPD. Thus the GPD-to-SDH (glycolytic-to-oxidative) ratio was decreased after ST. Compared with controls, total LDH activity increased transiently, and the LDH isozyme profile shifted from LDH-1 toward LDH-5, indicative of an enhanced glycolytic capacity. Combined, these results indicate that 1) the metabolic capacities of soleus fibers were not compromised, but the interrelationships among oxidative and glycolytic capacity and MHC content were apparently dissociated after ST; 2) enhancements in oxidative and glycolytic enzyme activities are not mutually exclusive; and 3) chronic reductions in skeletal muscle activity do not necessarily result in a reduced oxidative capacity.  相似文献   

9.
Myoglobin plays various roles in oxygen supply to muscle mitochondria. It is difficult, and in some cases impossible, to study the relationship between the myoglobin concentration and the oxidative capacity of individual muscle cells because myoglobin has to be fixed in situ whereas determination of oxidative capacity, for example, succinate dehydrogenase activity, requires unfixed cryostat sections. We have investigated whether a vapour-fixation technique allows the use of serial sections to study the relationship between myoglobin and succinate dehydrogenase activity. The technique is used to study a rat soleus muscle, two human skeletal muscle biopsies and biopsies of two patients with chronic heart failure, and in a control and hypertrophied rat heart. Staining intensities were quantified by microdensitometry. The absorbance values were calibrated using sections cut from gelatine blocks containing known amounts of myoglobin. The results show that it is possible to use serial sections for the determination of the myoglobin concentration and succinate dehydrogenase activity, and indicate that myoglobin can lead to a substantial reduction (18–60%) of the extracellular oxygen tension required to prevent an anoxic core in muscle cells.  相似文献   

10.
Fifteen-week-old rats were subjected to unloading induced by hindlimb suspension for 3 weeks. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and forkhead box-containing protein O1 (FOXO1) mRNA levels and fiber profiles of the soleus and plantaris muscles in rats subjected to unloading (unloaded group) were determined and compared with those of age-matched control rats (control group). The body weight and both the soleus and plantaris muscle weights were lower in the unloaded group than in the control group. The PGC-1α mRNA was downregulated in the soleus, but not in the plantaris muscle of the unloaded group. The FOXO1 mRNA was upregulated in both the soleus and plantaris muscles of the unloaded group. The oxidative enzyme activity was reduced in the soleus, but not in the plantaris muscle of the unloaded group. The percentage of type I fibers was decreased and the percentages of type IIA and IIC fibers were increased in the soleus muscle of the unloaded group, whereas there was no change in fiber type distribution in the plantaris muscle of the unloaded group. Atrophy of all types of fibers was observed in both the soleus and plantaris muscles of the unloaded group. We conclude that decreased oxidative capacity and fiber atrophy in unloaded skeletal muscles are associated with decreased PGC-1α and increased FOXO1 mRNA levels.  相似文献   

11.
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 ± 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabelled with fast and slow myosin heavy chain monoclonal antibodies. Mean ± S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 ± 69 vs. 34 ± 21 x 10 3µm 3) than fast and slow soleus fibers (40 ± 20 vs. 30 ± 14 x 10 3µm 3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (<70 µm) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (>70 µm) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 ± 51 vs. 55 ± 22 and 44 ± 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.  相似文献   

12.
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in later life. We have developed a model of uteroplacental insufficiency, a common cause of intrauterine growth retardation, in the rat. Early in life, the animals are insulin resistant and by 6 mo of age they develop diabetes. Glycogen content and insulin-stimulated 2-deoxyglucose uptake were significantly decreased in muscle from IUGR rats. IUGR muscle mitochondria exhibited significantly decreased rates of state 3 oxygen consumption with pyruvate, glutamate, alpha-ketoglutarate, and succinate. Decreased pyruvate oxidation in IUGR mitochondria was associated with decreased ATP production, decreased pyruvate dehydrogenase activity, and increased expression of pyruvate dehydrogenase kinase 4. Such a defect in IUGR mitochondria leads to a chronic reduction in the supply of ATP available from oxidative phosphorylation. Impaired ATP synthesis in muscle compromises energy-dependent GLUT4 recruitment to the cell surface, glucose transport, and glycogen synthesis, which contribute to insulin resistance and hyperglycemia of type 2 diabetes.  相似文献   

13.
Summary This report describes a quantitative histochemical study of myoglobin in skeletal muscle fibres. The muscle fibres were classified as fast or slow on the basis of their quantitative myofibrillar ATPase histochemistry. A large range of myoglobin absorbance values was found among fast skeletal muscle fibres. This range was relatively small among slow fibres. The concentrations of myoglobin and the activities of succinate dehydrogenase in individual muscle fibres in serial sections are weakly correlated in both the mouse soleus and plantaris muscle. The myoglobin concentration is higher in fast and slow oxidative soleus muscle fibres and the succinate dehydrogenase activity in these fibres is lower than in oxidative plantaris muscle fibres in the same range of cross-sectional area.  相似文献   

14.
The effect of heavy ion radiation exposure of the spinal cord on the properties of the motoneurons innervating the slow soleus and fast plantaris muscles was investigated. A 15-, 20-, 40-, 50-, or 70-Gy dose of carbon ions (5 Gy/min) was applied to the 2nd to the 6th lumbar segments of the spinal cord in rats. After a 1-month recovery period, the number and cell body size of the irradiated motoneurons innervating the soleus and plantaris muscles did not differ from that of the non-irradiated controls, irrespective of the dose received. However, the oxidative enzyme activity of these motoneurons was decreased by heavy ion radiation at doses of 40, 50, and 70 Gy compared to that of the non-irradiated controls. This decrease in oxidative enzyme activity levels in the motoneurons returned to that of the non-irradiated controls after a 6-month recovery period. We conclude that heavy ion radiation at doses of 40–70 Gy reversibly decreases the oxidative enzyme activity of motoneurons in the spinal cord of rats.  相似文献   

15.
大鼠和家兔生后发育各阶段比目鱼肌纤维的比较   总被引:2,自引:2,他引:0  
为研究大鼠与家兔骨骼肌各类型肌纤维的数量和二维分布以及生后发育对其影响,取生后2d和2、4、6、8、10周龄(体重10g和32、95、190、280、320g)大鼠及生后2d和2、4、8、12、16、20、24周龄(体重100g和220、400、750、1200、1600、2100、2500g)家兔的比目鱼肌做琥珀酸脱氢酶染色。实验结果表明,大鼠和家兔比目鱼肌纤维被分成Ⅰ型(SO),ⅡX型(FO)和ⅡA型(FOG)3型。使用图像分析系统分析每型肌纤维在生后发育各阶段的相关变化,大鼠和家兔比目鱼肌中:Ⅰ型纤维分布于整块肌肉,其数量随着生后发育而增加。幼体ⅡX型纤维分布在整块肌肉中,其数量随生后发育而减少;ⅡA型分布在肌肉中深层,数量几乎无变化;至成体时只有少量的ⅡX和ⅡA分布在肌表层。整个发育期间未见ⅡB型纤维。ⅡA型纤维直径最大,Ⅰ型中等,而ⅡX型最小。家兔3型肌纤维的平均横切面积比大鼠的大。这些结果表明大鼠和家兔后肢肌各种类型肌纤维的数量比例和分布随生长过程发生改变。  相似文献   

16.
The effects of 28 days of hindlimb suspension (HS) and HS plus 10 daily forceful lengthening contractions on rat soleus muscle fibers were studied. Compared with age-matched controls (CON), soleus wet weights of suspended rats were significantly decreased (approximately 49%). In HS rats, the light adenosinetriphosphatase (ATPase) fibers (staining lightly for myosin ATPase, pH = 8.8) atrophied more than the dark ATPase fibers (staining darkly for myosin ATPase, pH = 8.8). Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities and the proportion of dark ATPase fibers were higher in HS than CON rats. Daily forceful lengthening contractions did not prevent the suspension-induced changes. These results considered in conjunction with a collaborative study on the mechanical properties of HS rats (Roy et al., accompanying paper) suggest a shift in the contractile potential of the muscle following HS without a deficit in SDH, a metabolic property commonly associated with resistance to fatigue. The results support the view that soleus muscle fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that SDH and GPD activity per volume of tissue can be maintained or increased even when there are severe losses of contractile proteins.  相似文献   

17.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

18.
Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa) with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa) with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.  相似文献   

19.
The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4 wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n = 6) group compared with that of age-matched sham-operated (Sham, n = 6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic heart failure. However, our data would support the notion that there is a linkage between the function of heart and physiological properties of skeletal muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号