首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmotic swelling of glial cells may contribute to the development of retinal edema. We investigated whether sex steroids inhibit the swelling of glial somata in acutely isolated retinal slices and glial cells of the rat. Superfusion of retinal slices or cells from control animals with a hypoosmolar solution did not induce glial swelling, whereas glial swelling was observed in slices of postischemic and diabetic retinas. Progesterone, testosterone, estriol, and 17ß-estradiol prevented glial swelling with half-maximal effects at approximately 0.3, 0.6, 6, and 20 μM, respectively. The effect of progesterone was apparently mediated by transactivation of metabotropic glutamate receptors, P2Y1, and adenosine A1 receptors. The data suggest that sex steroids may inhibit cytotoxic edema in the retina.  相似文献   

2.
3.
胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)是TGF-β超家族的一个相关成员。哺乳动物睾丸曲细精管内支持细胞分泌的GDNF,能促进精原干细胞(spermatogonial stem cells,SSCs)的自我更新与增殖。SSCs去分化诱导产生的多能干细胞已被广泛应用于再生医学领域,且SSCs在制作转基因动物、男性不育治疗和体外实施精子发生过程等方面,具有极大的应用价值。所以,GDNF引发SSCs自我更新的作用机理非常值得探索。通过对GDNF引发SSCs自我更新的信号通路进行系统梳理,我们发现了如下的作用过程:GDNF与GFR-α1特异性结合,活化Ret蛋白酪氨酸激酶,随后激活Ras/ERK1/2、PI3K-Akt和SFK信号通路,促进SSCs的自我更新;同时,在该过程中还存在信号通路间的交联对话现象。  相似文献   

4.
目的:研究沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路的关系。方法:利用化学抑制剂U0126阻断MAPK/ERK信号通路,然后分别采用流式细胞术、Caspase-3活性检测试剂盒和Western Blot实验检测沙眼衣原体感染细胞在凋亡诱导剂Etoposide作用下细胞凋亡率和Caspase-3活性变化,以及PARP是否发生裂解。结果:当MAPK/ERK信号通路被阻断时,在Etoposide的作用下,沙眼衣原体感染细胞凋亡率明显上升,同时Caspase-3被活化和PARP发生裂解。结论:沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路激活有关。  相似文献   

5.
Abstract: Hepatocyte growth factor/scatter factor (HGF) was recently reported to function as a neurotrophic factor in the CNS. To investigate the intracellular signal pathways after activation of the HGF receptor c-Met in primary cultured rat neocortical cells, in vitro kinase assays were performed. HGF stimulation enhances the phosphorylation of endogenous 80- and 45-kDa substrates. Studies with protein kinase inhibitors and phorbol 12-myristate 13-acetate showed that protein kinase C (PKC) is activated intracellularly. The 80-kDa protein was identified to be the major PKC substrate MARCKS. Although four PKC subspecies, PKCα, PKCε, PKCγ, and PKCλ, were expressed in the cells, only PKCα, PKCε, and PKCγ were selectively translocated in the plasma membrane after HGF stimulation. As expected from these three PKC subspecies, phosphorylation of phospholipase Cγ1 (PLCγ1) but not phosphatidylinositol 3-kinase was enhanced, although the stimulation of brain-derived neurotrophic factor induced phosphorylation of phosphatidylinositol 3-kinase. In contrast to the neocortical cells, HGF did not enhance phosphorylation of PLCγ1 in primary astrocytes. We also found that activated PKC(s) served as a major mitogen-activated protein kinase activator in this pathway. These findings suggest that HGF exerts neurotrophic effects through selective phosphorylation of PLCγ1 and activation of distinct PKC subspecies in neocortical cells, most likely neurons.  相似文献   

6.
7.
Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.  相似文献   

8.
9.
Abstract: We have monitored glial cell line-derived neurotrophic factor (GDNF) secretion from rat C6 glioblastoma cells by ELISA. Representative cytokines, neurotrophins, growth factors, neuropeptides, and pharmacological agents were tested for their ability to modulate GDNF release. Whereas most factors tested had minimal effect, a 24-h treatment with fibroblast growth factor-1, −2, or −9 elevated secreted GDNF protein levels five- to 10-fold. The proinflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide elevated GDNF release 1.5- to twofold. Parallel studies aimed at elucidating intracellular events that may regulate GDNF synthesis/release demonstrated the involvement of multiple signaling pathways. GDNF levels were increased by phorbol 12,13-didecanoate (10 n M ) activation of protein kinase C, the Ca2+ ionophore A23187 (1 µ M ), okadaic acid (10 n M ) inhibition of type-2A protein phosphatases, nitric oxide donors (1 m M ), and H2O2 (1 m M )-induced oxidative stress. Elevation of cyclic AMP levels by either forskolin (10 µ M ) or dibutyryl cyclic AMP (1 m M ) repressed GDNF secretion, as did treatment with the glucocorticoid dexamethasone (1 µ M ). Our results demonstrate that diverse biological factors are capable of modulating GDNF protein levels and that multiple signal transduction systems can regulate GDNF synthesis and/or release.  相似文献   

10.
11.
Cells dissociated from brains of 1-day-old rats were cultured in medium containing either lipoprotein-deficient serum (LPDS) or LPDS plus various lipoprotein fractions. Increases in number of cells and in DNA content served as a measure of cell growth. Cholesterol synthesis was measured from the incorporation of [14C]acetate into total nonsaponifiable lipids and digitonin-precipitable sterols, and from the activity of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase. The data indicated that cholesterol biosynthesis from acetate was reduced in cells cultured in medium containing either LPDS plus low-density lipoproteins (LDL), high-density lipoproteins (HDL), or total lipoproteins (LP) and that this reduction was accompanied by a reduction in the activity of the HMG CoA reductase and an increase in the esterified sterol content. The reduction in cholesterol synthesis from acetate was maximal in cells cultured in the presence of HDL, whereas the maximal reduction in the activity of HMG CoA reductase occurred in cells cultured in the presence of LP. The presence of LDL or LP in the culture medium enhanced the cell growth but the presence of HDL did not. Esterified sterol content was highest in cells cultured in the medium containing LPDS plus LP and was not detected in cells cultured in LPDS medium. It is inferred from these data that rat brain glial cells in culture are able to utilize cholesterol in lipoproteins, that the presence of LDL in the medium enhances cell growth, and that reduced cholesterol synthesis in the presence of lipoproteins may occur at the HMG CoA reductase step as well as at some other step(s).  相似文献   

12.
13.
Bile acids have been reported to induce epidermal growth factor receptor (EGFR) activation and subsequent proliferation of activated hepatic stellate cells (HSC), but the underlying mechanisms and whether quiescent HSC are also a target for bile acid-induced proliferation or apoptosis remained unclear. Therefore, primary rat HSC were cultured for up to 48 h and analyzed for their proliferative/apoptotic responses toward bile acids. Hydrophobic bile acids, i.e. taurolithocholate 3-sulfate, taurochenodeoxycholate, and glycochenodeoxycholate, but not taurocholate or tauroursodeoxycholate, induced Yes-dependent EGFR phosphorylation. Simultaneously, hydrophobic bile acids induced phosphorylation of the NADPH oxidase subunit p47phox and formation of reactive oxygen species (ROS). ROS production was sensitive to inhibition of acidic sphingomyelinase, protein kinase Cζ, and NADPH oxidases. All maneuvers which prevented bile acid-induced ROS formation also prevented Yes and subsequent EGFR phosphorylation. Taurolithocholate 3-sulfate-induced EGFR activation was followed by extracellular signal-regulated kinase 1/2, but not c-Jun N-terminal kinase (JNK) activation, and stimulated HSC proliferation. When, however, a JNK signal was induced by coadministration of cycloheximide or hydrogen peroxide (H2O2), activated EGFR associated with CD95 and triggered EGFR-mediated CD95-tyrosine phosphorylation and subsequent formation of the death-inducing signaling complex. In conclusion, hydrophobic bile acids lead to a NADPH oxidase-driven ROS generation followed by a Yes-mediated EGFR activation in quiescent primary rat HSC. This proliferative signal shifts to an apoptotic signal when a JNK signal simultaneously comes into play.Hydrophobic bile acids play a major role in the pathogenesis of cholestatic liver disease and are potent inducers of hepatocyte apoptosis by triggering a ligand-independent activation of the CD952 death receptor (15). The underlying molecular mechanisms are complex and involve a Yes-dependent, but ligand-independent activation of the epidermal growth factor receptor (EGFR), which catalyzes CD95-tyrosine phosphorylation as a prerequisite for CD95 oligomerization, formation of the death-inducing signaling complex (DISC), and apoptosis induction (6, 7). Bile acids also activate EGFR in cholangiocytes (8) and activated hepatic stellate cells (HSC) (9), however, the mechanisms underlying bile acid-induced EGFR activation in HSC remained unclear (9). Surprisingly, bile acid-induced EGFR activation in HSC does not trigger apoptosis but results in a stimulation of cell proliferation (9). The behavior of quiescent HSC toward CD95 ligand (CD95L) is also unusual. CD95L, which is a potent inducer of hepatocyte apoptosis (1012), triggers activation of the EGFR in quiescent HSC, stimulates HSC proliferation, and simultaneously inhibits CD95-dependent death signaling through CD95-tyrosine nitration (13). Similar observations were made with other death receptor ligands, i.e. tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) (13). The mitogenic action of CD95L in quiescent, 1–2-day cultured HSC is because of a c-Src-dependent shedding of EGF and subsequent auto/paracrine activation of the EGFR (13). This unusual behavior of quiescent HSC toward death receptor ligands may relate to the recent findings that quiescent HSC might represent a stem/progenitor cell compartment in the liver with a capacity to differentiate not only into myofibroblasts but also toward hepatocyte- and endothelial-like cells (14). Thus, stimulation of HSC proliferation and resistance toward apoptosis in the hostile cytokine milieu accompanying liver injury may help HSC to play their role in liver regeneration. During cholestatic liver injury quiescent HSC are exposed to increased concentrations of circulating bile acids, but it is not known whether this may lead to HSC proliferation (as shown for activated HSC) (9), HSC apoptosis (as shown for hepatocytes) (17), or both of them. Therefore, the aim of the current study was (a) to identify the molecular mechanisms underlying bile acid-induced EGFR activation and (b) to elucidate whether bile acid-induced signaling can couple to both cell proliferation and cell death in quiescent HSC.The present study shows that cholestatic bile acids trigger a rapid NADPH oxidase activation in quiescent HSC, which leads to a Yes-mediated EGFR phosphorylation and HSC proliferation. In contrast to hepatocytes, hydrophobic bile acids do not induce a JNK signal in HSC. However, when JNK activation is induced by coadministration of either cycloheximide (CHX) or hydrogen peroxide (H2O2), the bile acid-induced mitogenic signal is shifted to an apoptotic one.  相似文献   

14.
In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donuts908, a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and “tip cells” at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.  相似文献   

15.
We used whole-cell patch-clamp recording techniques to investigate G protein-activated currents in cultured rat retinal pigment epithelial (RPE) cells. Using 140 mm KCl intracellular and 130 mm NaCl extracellular solutions, rat RPE cells possessed both inward and outward K+ currents. Upon addition of the nonhydrolyzable guanine triphosphate analogue, guanosine-5′-O-(3-thiophosphate) (GTPγS, 0.1 mm), to the recording electrode, a nonspecific cation (NSC) current was elicited. The NSC current had a mean reversal potential of +5.7 mV in 130 mm extracellular NaCl with Cs+-aspartate in the pipette, and was not affected by alterations in the extracellular Ca2+ or Cl concentration. The GTPγS-activated current was found to be permeable to several monovalent cations (K+, Na+, choline, TRIS, and NMDG). Addition of fluoroaluminate, an activator of large molecular weight heterotrimeric GTP-binding proteins (G proteins), to the intracellular recording solution activated the NSC current. The G protein involved was pertussis toxin (PTX)-sensitive, since GTPγS failed to activate the NSC current in cells pretreated with PTX. Further investigation of second messenger molecules suggested that activation of the NSC current was not affected by alterations in intracellular Ca2+ or ATP. From these results, we conclude that a G protein-regulated NSC current is present in rat RPE cells. Activation of the NSC current may sufficiently depolarize RPE cells to activate outward K+ currents. This would provide a mechanism by which these cells could rid themselves of accumulated K+. Received: 25 January 1996/Revised: 24 April 1996  相似文献   

16.
Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.  相似文献   

17.
Abstract: Endothelin receptors have been identified on astrocytes and astrocytoma, but their physiological significance has remained elusive. It is shown here that endothelins induce c- fos in primary cultures of mouse embryo astrocytes, as well as in two subclones of rat astrocytoma C6 cells, although with different kinetics. In addition, nerve growth factor expression is stimulated, as seen by mRNA accumulation and protein secretion, in primary astrocytes and one of the two C6 subclones, with an apparent correlation with the transience of c- fos induction. The activation of protein kinase C appears as an obligatory step during these processes, because (a) inhibition of protein kinase C by staurosporine blocks the induction by endothelin or phorbol esters of both c- fos and nerve growth factor, and (b) phorbol esterevoked down-regulation of protein kinase C completely abolishes the c- fos induction by endothelin, but not that by the β-adrenergic agonist isoproterenol, a known activator of the cyclic AMP-dependent pathway. Our results support the hypothesis that c- fos product might be implicated in nerve growth factor expression by astrocytes, and also suggest that endothelins may participate in vivo in the modulation of the glial neurotrophic activity during brain development or wound healing.  相似文献   

18.
The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.  相似文献   

19.
The aim of the study was to analyze whether the proliferative effects of insulin in rat liver involve cross-signaling toward the epidermal growth factor receptor (EGFR) and whether this is mediated by insulin-induced hepatocyte swelling. Studies were performed in the perfused rat liver and in primary rat hepatocytes. Insulin (35 nmol/liter) induced phosphorylation of the EGFR at position Tyr845 and Tyr1173, but not at Tyr1045, suggesting that EGF is not involved in insulin-induced EGFR activation. Insulin-induced EGFR phosphorylation and subsequent ERK1/2 phosphorylation were sensitive to bumetanide, indicating an involvement of insulin-induced hepatocyte swelling. In line with this, hypoosmotic (225 mosmol/liter) hepatocyte swelling also induced EGFR and ERK1/2 activation. Insulin- and hypoosmolarity-induced EGFR activation were sensitive to inhibition by an integrin-antagonistic RGD peptide, an integrin β1 subtype-blocking antibody, and the c-Src inhibitor PP-2, indicating the involvement of the recently described integrin-dependent osmosensing/signaling pathway (Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004) J. Biol. Chem. 279, 21294–21301). As shown by immunoprecipitation studies, insulin and hypoosmolarity induced a rapid, RGD peptide-, integrin β1-blocking antibody and PP-2-sensitive association of c-Src with the EGFR. As for control, insulin-induced insulin receptor substrate-1 phosphorylation remained unaffected by the RGD peptide, PP-2, or inhibition of the EGFR tyrosine kinase activity by AG1478. Both insulin and hypoosmolarity induced a significant increase in BrdU uptake in primary rat hepatocytes, which was sensitive to RGD peptide-, integrin β1-blocking antibody, PP-2, AG1478, and PD098059. It is concluded that insulin- or hypoosmolarity-induced hepatocyte swelling triggers an integrin- and c-Src kinase-dependent EGFR activation, which may explain the proliferative effects of insulin.  相似文献   

20.
We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 ∼2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the “missing link” mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3.Insulin-like growth factor-binding protein-3 (IGFBP-3)2 is one of the family of six IGFBPs that bind the peptide growth factors IGF-I and IGF-II with high affinity and regulate their bioactivity (1). As the predominant carrier of IGFs in the endocrine system, IGFBP-3 regulates the movement of these growth factors from the circulation to target tissues and inhibits their proliferative and antiapoptotic cellular effects by blocking their activation of the type 1 IGF receptor (IGFR1) at the cell surface. In vitro studies in a variety of cell types have revealed that IGFBP-3 may also impact on cell growth and survival independently of modulating IGF bioactivity, inducing cell cycle arrest and apoptosis by regulation of apoptotic effector proteins (24) and interaction with nuclear receptors (57).There is, however, also evidence of an association between IGFBP-3 and enhanced cell proliferation. Some clinical studies in breast, prostate, pancreatic, renal cell, and non-small cell lung cancers have shown that a high level of tissue expression of IGFBP-3 correlates with increased tumor growth or malignancy (813). Although the mechanism linking IGFBP-3 with growth stimulation in vivo remains unclear, we and others have shown that, in vitro, IGFBP-3 can enhance the effects of stimulatory growth factors. Human and bovine skin fibroblasts exposed to low concentrations of exogenous IGFBP-3 exhibit enhanced IGF-stimulated DNA synthesis (14, 15), and similarly, exogenous and endogenous IGFBP-3 enhanced the growth response to IGF-I in the MCF-7 breast cancer cell line (16). We have also shown previously that IGFBP-3 is inhibitory to DNA synthesis in MCF-10A breast epithelial cells in the absence of exogenous growth factors or serum (17), but is growth stimulatory in the presence of EGF in the same cell line (18). There is no evidence that potentiation of EGF or IGF bioactivity by IGFBP-3 requires direct interaction between IGFBP-3 and the growth factor receptors (15, 18), but the mechanism underlying the effects of IGFBP-3 on growth factor signaling has not been elucidated.Recently it was suggested that, in human umbilical vein endothelial cells, an antiapoptotic effect of IGFBP-3 is associated with increased expression and activity of sphingosine kinase 1 (SphK1), and formation of the bioactive sphingolipid sphingosine 1-phosphate (S1P) (19, 20). SphK1 has been shown to have a role in oncogenesis (21), and S1P, acting both as an intracellular second messenger and extracellularly through activation of specific S1P receptors, stimulates cell proliferation and survival (22). In addition to transducing S1P signaling, the G-protein-coupled S1P receptors have been implicated in signal amplification of a variety of growth factors receptors, including the EGF and platelet-derived growth factor receptors, via receptor transactivation (23, 24). In this study we investigated whether the sphingosine kinase system is involved in modulation of growth factor receptor signaling pathways by IGFBP-3 and demonstrate that SphK1 expression is stimulated by IGFBP-3 in MCF-10A cells, and its activity is required for potentiation of EGF and IGF-I signaling by IGFBP-3 in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号