首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.  相似文献   

2.
Blood–spinal cord barrier (BSCB) disruption following spinal cord injury (SCI) significantly compromises functional neuronal recovery. Autophagy is a potential therapeutic target when seeking to protect the BSCB. We explored the effects of lithium chloride (LiCl) on BSCB permeability and autophagy-induced SCI both in a rat model of SCI and in endothelial cells subjected to oxygen–glucose deprivation. We evaluated BSCB status using the Evans Blue dye extravasation test and measurement of tight junction (TJ) protein levels; we also assessed functional locomotor recovery. We detected autophagy-associated proteins in vivo and in vitro using both Western blotting and immunofluorescence staining. We found that, in a rat model of SCI, LiCl attenuated the elevation in BSCB permeability, improved locomotor recovery, and inhibited the degradation of TJ proteins including occludin and claudin-5. LiCl significantly induced the extent of autophagic flux after SCI by increasing LC3-II and ATG-5 levels, and abolishing p62 accumulation. In addition, a combination of LiCl and the autophagy inhibitor chloroquine not only partially eliminated the BSCB-protective effect of LiCl, but also exacerbated TJ protein degradation both in vivo and in vitro. Together, these findings suggest that LiCl treatment alleviates BSCB disruption and promotes locomotor recovery after SCI, partly by stimulating autophagic flux.  相似文献   

3.
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.  相似文献   

4.
Blood‐spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin‐induced BSCB protection might not be mediated by up‐regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP‐9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP‐9 in SCI. Our results showed that metformin decreased MMP‐9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM‐1 down‐regulation. Also, our in vitro study showed that metformin inhibited TNF‐α‐induced MMP‐9 up‐regulation in neutrophils, which might be mediated via an AMPK‐dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP‐9 production, but not by up‐regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.  相似文献   

5.
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.  相似文献   

6.
The role of autophagy in the recovery of spinal cord injury remains controversial; in particular, the mechanism of autophagy regulated degradation of ubiquitinated proteins has not been discussed to date. In this study, we investigated the protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the rat model of trauma. bFGF administration improved recovery and increased the survival of neurons in spinal cord lesions in the rat model. The protective effect of bFGF is related to the inhibition of autophagic protein LC3II levels; bFGF treatment also enhances clearance of ubiquitinated proteins by p62, which also increases the survival of neuronal PC-12 cells. The activation of the downstream signals of the PI3K/Akt/mTOR pathway by bFGF treatment was detected both in vivo and in vitro. Combination therapy including the autophagy activator rapamycin partially abolished the protective effect of bFGF. The present study illustrates that the role of bFGF in SCI recovery is related to the inhibition of excessive autophagy and enhancement of ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new trend for bFGF drug development for central nervous system injuries and sheds light on protein signaling involved in bFGF action.  相似文献   

7.
Spinal cord injury (SCI) is a devastating neurological disorder. Autophagy is induced and plays a crucial role in SCI. Ginsenoside Rb1 (Rb1), one of the major active components extracted from Panax Ginseng CA Meyer, has exhibited neuroprotective effects in various neurodegenerative diseases. However, it remains unknown whether autophagy is involved in the neuroprotection of Rb1 on SCI. In this study, we examined the regulation of autophagy following Rb1 treatment and its involvement in the Rb1-induced neuroprotection in SCI and in vitro injury model. Firstly, we found that Rb1 treatment decreased the loss of motor neurons and promoted function recovery in the SCI model. Furthermore, we found that Rb1 treatment inhibited autophagy in neurons, and suppressed neuronal apoptosis and autophagic cell death in the SCI model. Finally, in the in vitro injury model, Rb1 treatment increased the viability of PC12 cells and suppressed apoptosis by inhibiting excessive autophagy, whereas stimulation of autophagy by rapamycin abolished the anti-apoptosis effect of Rb1. Taken together, these findings suggest that the inhibition of autophagy is involved in the neuroprotective effects of Rb1 on SCI.  相似文献   

8.
Fibroblast growth factor 1 (FGF1) is thought to exert protective and regenerative effects on neurons following spinal cord injury (SCI), although the mechanism of these effects is not well understood. The use of FGF1 as a therapeutic agent is limited by its lack of physicochemical stability and its limited capacity to cross the blood‐spinal cord barrier. Here, we demonstrated that overexpression of FGF1 in spinal cord following SCI significantly reduced tissue loss, protected neurons in the ventricornu, ameliorated pathological morphology of the lesion, dramatically improved tissue recovery via neuroprotection, and promoted axonal regeneration and remyelination both in vivo and in vivo. In addition, the autophagy and the expression levels of PRDX1 (an antioxidant protein) were induced by AAV‐FGF1 in PC12 cells after H2O2 treatment. Furthermore, the autophagy levels were not changed in PRDX1‐suppressing cells that were treated by AAV‐FGF1. Taken together, these results suggest that FGF1 improves functional recovery mainly through inducing PRDX1 expression to increase autophagy and anti‐ROS activity after SCI.  相似文献   

9.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. Secondary injury is a major target for SCI therapy, whereas microglia play an important role in secondary injury. The immunoresponsive gene 1 (Irg-1) has been recorded as one of the most significantly upregulated genes in SCI tissues in gene chip data; however, its role in SCI remains unclear. This study aims to illustrate the role of Irg-1 as well as its regulated metabolite itaconate in SCI. It was demonstrated that the expression of Irg-1 was increased in spinal cord tissues in mice as well as in microglia stimulated by lipopolysaccharides (LPS). It was also shown that overexpression of Irg-1 may suppress LPS-induced inflammation in microglia, while these protective effects were attenuated by Nrf2 silencing. In vivo, overexpression of Irg-1 was shown to suppress neuroinflammation and improve motor function recovery. Furthermore, treatment of microglia with itaconate demonstrated similar inflammation suppressive effects as Irg-1 overexpression in vitro and improved motor function recovery in vivo. In conclusion, the current study shows that Irg-1 and itaconate are involved in the recovery process of SCI, either Irg-1 overexpression or itaconate treatment may provide a promising strategy for the treatment of SCI.Subject terms: Apoptosis, Cell death in the nervous system, Microglia, Trauma  相似文献   

10.
Spinal cord injuries (SCIs) are devastating conditions of the central nervous system (CNS) for which there are no restorative therapies. Neuronal death at the primary lesion site and in remote regions that are functionally connected to it is one of the major contributors to neurological deficits following SCI.Disruption of autophagic flux induces neuronal death in many CNS injuries, but its mechanism and relationship with remote cell death after SCI are unknown. We examined the function and effects of the modulation of autophagy on the fate of axotomized rubrospinal neurons in a rat model of spinal cord dorsal hemisection (SCH) at the cervical level. Following SCH, we observed an accumulation of LC3-positive autophagosomes (APs) in the axotomized neurons 1 and 5 days after injury. Furthermore, this accumulation was not attributed to greater initiation of autophagy but was caused by a decrease in AP clearance, as demonstrated by the build-up of p62, a widely used marker of the induction of autophagy. In axotomized rubrospinal neurons, the disruption of autophagic flux correlated strongly with remote neuronal death and worse functional recovery. Inhibition of AP biogenesis by 3-methyladenine (3-MA) significantly attenuated remote degeneration and improved spontaneous functional recovery, consistent with the detrimental effects of autophagy in remote damage after SCH. Collectively, our results demonstrate that autophagic flux is blocked in axotomized neurons on SCI and that the inhibition of AP formation improves their survival. Thus, autophagy is a promising target for the development of therapeutic interventions in the treatment of SCIs.  相似文献   

11.
Blood‐brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl‐3n‐butylphthalide (Dl‐NBP) has a neuroprotective effect with anti‐inflammatory, anti‐oxidative, anti‐apoptotic and mitochondrion‐protective functions. However, the effect and molecular mechanism of Dl‐NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH‐SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl‐NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up‐regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy‐related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl‐NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl‐NBP for TBI recovery. Collectively, our current studies indicate that Dl‐NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl‐NBP, as an anti‐inflammatory and anti‐oxidative drug, may act as an effective strategy for TBI recovery.  相似文献   

12.
We have previously reported neuroprotection in spinal cord injury (SCI) by Lipitor [atorvastatin (AT)]-pre-treatment. Though informative, pre-treatment studies find only limited clinical application as trauma occurrence is unpredictable. Therefore, this study investigates the efficacy of AT treatment post-SCI. In a rat model of contusion-SCI resulting in complete hindlimb paralysis, AT treatment (5 mg/kg; gavage) was begun 2, 4, or 6 h post-SCI followed by a once daily dose thereafter for 6 weeks. While the placebo vehicle (VHC)-SCI rats showed substantial functional deficit, AT-SCI animals exhibited significant functional recovery. AT diminished injury-induced blood-spinal cord barrier (BSCB) dysfunction with significantly reduced infiltration and tumor necrosis factor-alpha/interleukin-1beta/inducible nitric oxide synthase expression at site of injury. BSCB protection in AT-SCI was attributable to attenuated matrix metalloproteinase-9 (MMP9) expression - a central player in BSCB disruption. Furthermore, endothelial MMP9 expression was found to be RhoA/ROCK pathway-mediated and regulated by AT through an isoprenoid-dependent mechanism. Attenuation of these early inflammatory events reduced secondary damage. Significant reduction in axonal degeneration, myelin degradation, gliosis, and neuronal apoptosis with resultant enhancement in tissue sparing was observed in AT-SCI compared with VHC-SCI. In summary, this novel report presenting the efficacy of post-injury AT treatment might be of critical therapeutic value as effective treatments are currently unavailable for SCI.  相似文献   

13.
Bo-Yin  Zhang  Qingsan  Zhu  Yihang  Ma  Fan  Yang  Yuhang  Zhu  Pengyu  Chang 《Neurochemical research》2021,46(4):792-803

Spinal cord injury (SCI) induced catastrophic neurological disability is often incurable at present. The injury triggered immediately oligodendrocytes loss and overwhelming demyelination are regarded as an insurmountable barrier to SCI recovery. To date, effective strategy to promote the endogenous oligodendrocytes replacement post SCI remains elusive. Epigenetic modifications are emerging as critical molecular switches of gene expression in CNS. However, the epigenetic mechanisms underlying oligodendrogenesis post SCI yet to be discovered. In this study, we report that H3K27me3 demethylase JMJD3 exists as a pivotal epigenetic regulator which manipulates the endogenous oligodendrogenesis post SCI. We found that JMJD3 inhibition promotes the oligodendrocyte linage commitment of neural stem/progenitor cells (NPCs) in vitro and in vivo. Moreover, we demonstrated that JMJD3 inhibition mediated SAPK/JNK signaling inactivation is functionally necessary for endogenous oligodendrocyte-lineage commitment post SCI. Our results also suggested that JMJD3 is downstream of SAPK/JNK pathway, and capable of translates SCI induced SAPK/JNK signaling into epigenetic codes readable by spinal cord endogenous NPCs. Taken together, our findings provide novel evidence of JMJD3 mediated oligodendrocyte-lineage commitment orchestration post SCI, which would be a potential epigenetic approach to induce the mature mammalian endogenous recovery.

  相似文献   

14.
Spinal cord injury (SCI) is a serious central trauma, leading to severe dysfunction of motor and sensory systems. Secondary injuries, such as apoptosis and cell autophagy, significantly impact the motor function recovery process. Metformin is a widely used oral anti-diabetic agent for type 2 diabetes in the world. It has been demonstrated to promote autophagy and inhibit apoptosis in the nervous system. However, its role in recovery following SCI is still unknown. In this study, we determined that motor function, assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor assessment scale, was significantly higher in rats treated with metformin following injury. Nissl staining revealed that metformin also increased the number of surviving neurons in the spinal cord lesion. Western blot and immunofluorescent analysis revealed that mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) decreased, while the expression of autophagy markers increased and apoptosis markers declined in animals treated with metformin following SCI. Taken together, these findings suggest that metformin functions as a neuroprotective agent following SCI by promoting autophagy and inhibiting apoptosis by regulating the mTOR/P70S6K signaling pathway.  相似文献   

15.
Autophagy is an intracellular catabolic mechanism for the degradation of cytoplasmic constituents in the autophagosomal–lysosomal pathway. This mechanism plays an important role in homeostasis and it is defective in certain diseases. Preceding studies have revealed that autophagy is developing as an important moderator of pathological responses associated to spinal cord injury (SCI) and plays a crucial role in secondary injury initiating a progressive degeneration of the spinal cord. Thus, based on this evidence in this study, we used two different selective inhibitors of mTOR activity to explore the functional role of autophagy in an in vivo model of SCI as well as to determine whether the autophagic process is involved in spinal cord tissue damage. We treated animals with a novel synthetic inhibitor temsirolimus and with a dual mTORC1 and mTORC2 inhibitor KU0063794 matched all with the well-known inhibitor of mTOR the rapamycin. Our results demonstrated that mTOR inhibitors could regulate the neuroinflammation associated to SCI and the results that we obtained evidently demonstrated that rapamycin and temsirolimus significantly diminished the expression of iNOS, COX2, GFAP, and re-established nNOS levels, but the administration of KU0063794 is able to blunt the neuroinflammation better than rapamycin and temsirolimus. In addition, neuronal loss and cell mortality in the spinal cord after injury were considerably reduced in the KU0063794-treated mice. Accordingly, taken together our results denote that the administration of KU0063794 produced a neuroprotective function at the lesion site following SCI, representing a novel therapeutic approach after SCI.  相似文献   

16.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

17.
Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.  相似文献   

18.
Inflammation and neuronal apoptosis contribute to the progression of secondary injury after spinal cord injury (SCI) and are targets for SCI therapy; autophagy is reported to suppress apoptosis in neuronal cells and M2 polarization may attenuate inflammatory response in microglia, while both are negatively regulated by mTORC1 signalling. We hypothesize that mTORC1 suppression may have dual effects on inflammation and neuronal apoptosis and may be a feasible approach for SCI therapy. In this study, we evaluate a novel inhibitor of mTORC1 signalling, Astragaloside IV (AS‐IV), in vitro and in vivo. Our results showed that AS‐IV may suppress mTORC1 signalling both in neuronal cells and microglial cells in vitro and in vivo. AS‐IV treatment may stimulate autophagy in neuronal cells and protect them against apoptosis through autophagy regulation; it may also promote M2 polarization in microglial cells and attenuate neuroinflammation. In vivo, rats were intraperitoneally injected with AS‐IV (10 mg/kg/d) after SCI, behavioural and histological evaluations showed that AS‐IV may promote functional recovery in rats after SCI. We propose that mTORC1 suppression may attenuate both microglial inflammatory response and neuronal apoptosis and promote functional recovery after SCI, while AS‐IV may become a novel therapeutic medicine for SCI.  相似文献   

19.
The family of interleukin (IL)-6 like cytokines plays an important role in the neuroinflammatory response to injury by regulating both neural as well as immune responses. Here, we show that expression of the IL-6 family member oncostatin M (OSM) and its receptor is upregulated after spinal cord injury (SCI). To reveal the relevance of increased OSM signaling in the pathophysiology of SCI, OSM was applied locally after spinal cord hemisection in mice. OSM treatment significantly improved locomotor recovery after mild and severe SCI. Improved recovery in OSM-treated mice was associated with a reduced lesion size. OSM significantly diminished astrogliosis and immune cell infiltration. Thus, OSM limits secondary damage after CNS trauma. In vitro viability assays demonstrated that OSM protects primary neurons in culture from cell death, suggesting that the underlying mechanism involves direct neuroprotective effects of OSM. Furthermore, OSM dose-dependently promoted neurite outgrowth in cultured neurons, indicating that the cytokine plays an additional role in CNS repair. Indeed, our in vivo experiments demonstrate that OSM treatment increases plasticity of serotonergic fibers after SCI. Together, our data show that OSM is produced at the lesion site, where it protects the CNS from further damage and promotes recovery.  相似文献   

20.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号