首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In β-arrestin recruitment assays, ubiquitin did not sufficiently recruit β-arrestin2 to CXCR4 (EC50 > 10 μM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1–6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.  相似文献   

2.
黄顺  于洋  吴娴婕  林强 《病毒学报》2021,37(2):325-331
重症手足口病患儿中心肌损害常见,肠道病毒71型(Enterovirus 71,EV71)是引起手足口病的主要病原体之一,EV71感染小鼠可以出现心肌炎的病理改变,但EV71引起心肌损害的机制尚不明确。为了阐明EV71引起心肌损害的机制,本实验观察了EV71感染小鼠心肌损害与CXC趋化因子配体12(CXC chemokine ligand 12,CXCL12)/CXC趋化因子受体4(CXC chemokine receptor 4,CXCR4)通路激活的关系。BALB/c乳鼠随机分为对照组、EV71组、EV71+AMD3100组、AMD3100组,对照组、AMD3100组给予生理盐水腹腔注射,EV71组、EV71+AMD3100组给予EV71病毒液腹腔注射;而后EV71+AMD3100组、AMD3100组给予CXCR4抑制剂AMD3100腹腔注射、连续7d。比较四组间血清中CXCL12、磷酸肌酸激酶同工酶(CreatineKinase-MB,CK-MB)、乳酸脱氢酶(Lactate dehydrogenase,LDH)含量、心肌病理改变及细胞凋亡率、心肌中CXCR4、含半胱氨酸的天冬氨酸蛋白水解酶-3(caspase-3)表达及肿瘤坏死因子-α(Tumor necrosis factor,TNF-α)、白介素-6(Interleukin-6,IL-6)含量的差异。与对照组比较,EV71组血清中CXCL12、CK-MB、LDH的含量明显增加,心肌出现了典型的心肌炎病理改变且细胞凋亡率、CXCR4及caspase-3表达水平、TNF-α及IL-6含量明显增加;与EV71组比较,EV71+AMD3100组血清中CXCL12、CK-MB、LDH的含量明显降低,心肌的病理改变改善且细胞凋亡率、CXCR4及caspase-3表达水平、TNF-α及IL-6含量明显降低。以上结果表明EV71感染小鼠心肌中CXCL12/CXCR4通路过度激活,该通路的激活介导了心肌细胞凋亡及炎症反应。本研究创新点为阐明了CXCL12/CXCR4通路在EV71病毒感染引起心肌损害中的作用,CXCL12/CXCR4通路激活能够激活EV71感染小鼠心肌的炎症反应及细胞凋亡,这为今后研究手足口病发病过程中心肌损害的机制提供了依据。  相似文献   

3.
Stromal cell-derived factor 1 (CXCL12) is an angiogenic chemokine that is believed to act solely via its cognate receptor CXCR4. Evidence is now provided for the existence of a different CXCL12 binding and signaling receptor on endothelial cells. Bovine aortic endothelial cells (BAECs) strongly expressed CXCR4 and exhibited high binding capacity for fluorescently labeled CXCL12. However, CXCL12 binding was not correlated with the CXCR4 expression level and was virtually unaffected by the specific CXCR4 antagonists AMD3100 or T22. Similar observations were made in endothelial cells of mouse and human origin. Also, AMD3100 failed to block CXCL12 internalization and CXCL12-induced intracellular signal transduction via extracellular signal-regulated kinases 1/2 in BAECs. In contrast, CXCL12 binding and signaling were almost completely inhibited by the CXCR4 antagonist in T-lymphoid SupT1 cells. Together, our data point to the existence of an additional receptor through which CXCL12 exerts its biological effects in endothelial cells.  相似文献   

4.
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.  相似文献   

5.
Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow to the peripheral blood is utilized in clinical HSPC transplantation protocols. Retention of HSPCs in the bone marrow is determined by relationships between the chemokine chemokine (C-X-C motif) ligand 12 (CXCL12) and its major receptor C-X-C chemokine receptor type 4 (CXCR4), and disruption of this retention by CXCR4 antagonists such as AMD3100 induces rapid HSPC mobilization. Here, we report that aminoglycoside-polyarginine conjugates (APACs) and N-α-acetyl-nona-D-arginine (r9) induce mobilization of white blood cells and, preferentially, immature hematopoietic progenitor cells (HPCs) in mice, similarly to AMD3100. Remarkably, administration of AMD3100 with each one of the APACs or r9 caused additional HPC mobilization. The mobilizing activity of APACs and r9 was accompanied by a significant elevation in plasma CXCL12 levels. To further understand how APACs, r9 and their combinations with AMD3100 compete with CXCL12 binding to CXCR4, as well with antibody against CXCR4 for CXCR4 binding, we have undertaken an approach combining experimental validation and docking to determine plausible binding modes for these ligands. On the basis of our biological and docking findings, and recently published NMR data, we suggest that combination of pairs of compounds such as APACs (or r9) with AMD3100 induces more efficient disruption of the CXCL12-CXCR4 interaction than AMD3100 alone, resulting in enhanced HPC mobilization.  相似文献   

6.
CXCR7 is an atypical chemokine receptor that signals through β-arrestin in response to agonists without detectable activation of heterotrimeric G-proteins. Its cognate chemokine ligand CXCL12 also binds CXCR4, a chemokine receptor of considerable clinical interest. Here we report that TC14012, a peptidomimetic inverse agonist of CXCR4, is an agonist on CXCR7. The potency of β-arrestin recruitment to CXCR7 by TC14012 is much higher than that of the previously reported CXCR4 antagonist AMD3100 and differs only by one log from that of the natural ligand CXCL12 (EC(50) 350 nM for TC14012, as compared with 30 nM for CXCL12 and 140 μM for AMD3100). Moreover, like CXCL12, TC14012 leads to Erk 1/2 activation in U373 glioma cells that express only CXCR7, but not CXCR4. Given that with TC14012 and AMD3100 two structurally unrelated CXCR4 antagonists turn out to be agonists on CXCR7, this likely reflects differences in the activation mechanism of the arrestin pathway by both receptors. To identify the receptor domain responsible for these opposed effects, we investigated CXCR4 and CXCR7 C terminus-swapping chimeras. Using quantitative bioluminescence resonance energy transfer, we find that the CXCR7 receptor core formed by the seven-transmembrane domains and the connecting loops determines the agonistic activity of both TC14012 and AMD3100. Moreover, we find that the CXCR7 chimera bearing the CXCR4 C-terminal constitutively associates with arrestin in the absence of ligands. Our data suggest that the CXCR4 and CXCR7 cores share ligand-binding surfaces for the binding of the synthetic ligands, indicating that CXCR4 inhibitors should be tested also on CXCR7.  相似文献   

7.
Ovarian cancer (OC) is a lethal gynecologic tumor, which brings its mortality to the head. CXCL12 and its receptor chemokine receptor 4 ( CXCR4) have been found to be highly expressed in OC and contribute to the disease progression by affecting tumor cell proliferation and invasion. Here, in this study, we aim to explore whether the blockade of CXCL12–CXCR4 axis with AMD3100 (a selective CXCR4 antagonist) has effects on the progression of OC. On the basis of the gene expression omnibus database of OC gene expression chips, the OC differentially expressed genes were screened by microarray analysis. OC (nonmetastatic and metastatic) and normal ovarian tissues were collected to determine the expressions of CXCL12 and CXCR4. A series of AMD3100, shRNA against CXCR4, and pCNS-CXCR4 were introduced to treat CAOV3 cells with the highest CXCR4 was assessed. Cell viability, apoptosis, migration, and invasion were all evaluated. The microarray analysis screened out the differential expression of CXCL12–CXCR4 in OC. CXCL12 and CXCR4 expressions were increased in OC tissues, particularly in the metastatic OC tissues. Downregulation of CXCR4 by AMD3100 or shRNA was observed to have a critical role in inhibiting cell proliferation, migration, and invasion of the CAOV3 OC cell line while promoting cell apoptosis. Overexpressed CXCR4 brought significantly promoting effects on the proliferation and invasiveness of OC cells. These results reinforce that the blockade of CXCL12–CXCR4 axis with AMD3100 inhibits the growth of OC cells. The antitumor role of the inhibition of CXCL12–CXCR4 axis offers a preclinical validation of CXCL12–CXCR4 axis as a therapeutic target in OC.  相似文献   

8.
Chemokine CXCL12 and receptor CXCR4 have emerged as promising therapeutic targets for ovarian cancer, a disease that continues to have a dismal prognosis. CXCL12-CXCR4 signaling drives proliferation, survival, and invasion of ovarian cancer cells, leading to tumor growth and metastasis. Pleiotropic effects of CXCR4 in multiple key steps in ovarian cancer suggest that blocking this pathway will improve outcomes for patients with this disease. To quantify CXCL12-CXCR4 signaling in cell-based assays and living mouse models of ovarian cancer, we developed a click beetle red luciferase complementation reporter that detects activation of CXCR4 based on recruitment of the cytosolic adapter protein β-arrestin 2. Both in two-dimensional and three-dimensional cell cultures, we established that bioluminescence from this reporter measures CXCL12-dependent activation of CXCR4 and inhibition of this pathway with AMD3100, a clinically-approved small molecule that blocks CXCL12-CXCR4 binding. We used this imaging system to quantify CXCL12-CXCR4 signaling in a mouse model of metastatic ovarian cancer and showed that treatment with AMD3100 interrupted this pathway in vivo. Combination therapy with AMD3100 and cisplatin significantly decreased tumor burden in mice, although differences in overall survival were not significantly greater than treatment with either agent as monotherapy. These studies establish a molecular imaging reporter system for analyzing CXCL12-CXCR4 signaling in ovarian cancer, which can be used to investigate biology and therapeutic targeting of this pathway in cell-based assays and living mice.  相似文献   

9.
The chemokine receptor CXCR4 is widely expressed in human cancers and regulates cell invasion, proliferation and survival. Because mutations in the CXCR4 gene could regulate its function we sequenced the coding region of the CXCR4 gene in 18 human melanoma and 3 human colon carcinoma cell lines. The same somatic point mutation (G574A; V160I) in the fourth trans-membrane region of CXCR4 was detected in one colon cancer cell line (PD) and one melanoma cell line (LB). CXCR4 was expressed and functional in both PD and LB cells, PD and LB cells migrated specifically toward the receptor ligand, CXCL12 and P-Erk was specifically induced by CXCL12. To give insight into the function of the mutant CXCR4 receptor, human A431, epidermoid carcinoma cells, were stably transfected with both mutant and wild type CXCR4. In vitro, A431 cells harboring CXCR4G574A migrated specifically toward CXCL12 and CXCL12 induced ERK phosphorylation. Interestingly, in vivo studies showed that the growth of A431 tumors harboring CXCR4G574A was delayed compared to those harboring WT CXCR4. As expected, treatment with AMD3100, a specific CXCR4 inhibitor, reduced the in vivo growth of CXCR4G574A tumor bG574A rprisingly, increased the growth of CXCR4G574A A431 cells. This is the first report of a spontaneously occurring, functionally active CXCR4 mutation in human cancer cells. While the mutation impairs cell growth in vivo, the CXCR4 inhibitor, AMD3100, stimulated the growth of cells harboring CXCR4G574A.  相似文献   

10.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

11.
CXCL12 (stromal cell-derived factor 1) is a unique biological ligand for the chemokine receptor CXCR4. We previously reported that treatment with a specific CXCR4 antagonist, AMD3100, exerts a beneficial effect on the development of collagen-induced arthritis (CIA) in the highly susceptible IFN-γ receptor-deficient (IFN-γR KO) mouse. We concluded that CXCL12 plays a central role in the pathogenesis of CIA in IFN-γR KO mice by promoting delayed type hypersensitivity against the auto-antigen and by interfering with chemotaxis of CXCR4+ cells to the inflamed joints. Here, we investigated whether AMD3100 can likewise inhibit CIA in wild-type mice and analysed the underlying mechanism. Parenteral treatment with the drug at the time of onset of arthritis reduced disease incidence and modestly inhibited severity in affected mice. This beneficial effect was associated with reduced serum concentrations of IL-6. AMD3100 did not affect anti-collagen type II antibodies and, in contrast with its action in IFN-γR KO mice, did not inhibit the delayed type hypersensitivity response against collagen type II, suggesting that the beneficial effect cannot be explained by inhibition of humoral or cellular autoimmune responses. AMD3100 inhibited the in vitro chemotactic effect of CXCL12 on splenocytes, as well as in vivo leukocyte infiltration in CXCL12-containing subcutaneous air pouches. We also demonstrate that, in addition to its effect on cell infiltration, CXCL12 potentiates receptor activator of NF-κB ligand-induced osteoclast differentiation from splenocytes and increases the calcium phosphate-resorbing capacity of these osteoclasts, both processes being potently counteracted by AMD3100. Our observations indicate that CXCL12 acts as a pro-inflammatory factor in the pathogenesis of autoimmune arthritis by attracting inflammatory cells to joints and by stimulating the differentiation and activation of osteoclasts.  相似文献   

12.
13.
Recent studies have shown that pulmonary angiogenesis is an important pathological process in the development of hepatopulmonary syndrome (HPS), and growing evidence has indicated that Stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis is involved in pulmonary vascular disease by mediating the accumulation of c-kit + cells. This study aimed to test the effect of AMD3100, an antagonist of CXCR4, in HPS pulmonary angiogenesis. Common bile duct ligation (CBDL) rats were used as experimental HPS model and were treated with AMD3100 (1.25 mg/kg/day, i.p.) or 0.9% saline for 3 weeks. The sham rats underwent common bile duct exposure without ligation. The c-kit + cells accounts and its angiogenic-related functions, prosurvival signals, pulmonary angiogenesis and arterial oxygenation were analysed in these groups. Our results showed that pulmonary SDF-1/CXCR4, Akt, Erk and VEGF/VEGFR2 were significantly activated in CBDL rats, and the numbers of circulating and pulmonary c-kit + cells were increased in CBDL rats compared with control rats. Additionally, the angiogenic-related functions of c-kit + cells and pulmonary microvessel counts were also elevated in CBDL rats. CXCR4 inhibition reduced pulmonary c-kit + cells and microvessel counts and improved arterial oxygenation within 3 weeks in CBDL rats. The pulmonary prosurvival signals and pro-angiogenic activity of c-kit + cells were also down-regulated in AMD3100-treated rats. In conclusion, AMD3100 treatment attenuated pulmonary angiogenesis in CBDL rats and prevented the development of HPS via reductions in pulmonary c-kit + cells and inhibition of the prosurvival signals. Our study provides new insights in HPS treatment.  相似文献   

14.
Targeting the interaction between G-Protein Coupled Receptor, CXCR4, and its natural ligand CXCL12 is a leading strategy to mitigate cancer metastasis and reduce inflammation. Several pyridine-based compounds modeled after known small molecule CXCR4 antagonists, AMD3100 and WZ811, were synthesized. Nine hit compounds were identified. These compounds showed lower binding concentrations than AMD3100 (1000 nM) and six of the nine compounds had an effective concentration (EC) less than or equal to WZ811 (10 nM). Two of the hit compounds (2g and 2w) inhibited invasion of metastatic cells at a higher rate than AMD3100 (62%). Compounds 2g and 2w also inhibit inflammation in the same range as WZ811 in the paw edema test at 40% reduction in inflammation. These preliminary results are the promising foundation of a new class of pyridine-based CXCR4 antagonists.  相似文献   

15.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

16.
探讨AMD3100对apoE-/-小鼠骨髓内皮祖细胞的动员作用及其增殖、迁移和黏附的影响.12只8周龄雄性apoE-/-小鼠随机分为AMD3100组(2.5 mg/(kg·2d))和对照组(PBS 0.1 ml/2d),高脂高胆固醇饲料喂养12周后,差速贴壁法结合微孔法分离培养小鼠骨髓细胞,免疫荧光鉴定CD133/VEGFR-2双阳性细胞为内皮祖细胞;MTT比色法、Transwell、黏附试验分别检测细胞的增殖、迁移和黏附能力;通过计数典型内皮祖细胞克隆形成单位,观察次级集落单位的大小及细胞密度,检测各组内皮祖细胞的克隆形成能力;RT-PCR和Western blot检测内皮祖细胞上CXCR4 mRNA和蛋白质表达水平.与对照组比较,AMD3100组骨髓源性内皮祖细胞的增殖、迁移、黏附和克隆形成能力均显著低于对照组,其CXCR4mRNA和蛋白质表达均显著低于对照组.结果表明:持续注射AMD3100可抑制骨髓源内皮祖细胞的增殖、迁移、黏附和克隆形成能力,并下调CXCR4的表达.  相似文献   

17.
Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+)/CD133(+) prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.  相似文献   

18.
Aminoglycoside-arginine conjugates (AACs) are multi-target HIV-1 inhibitors. The most potent AAC is neomycin hexa-arginine conjugate, NeoR6. We here demonstrate that NeoR6 interacts with CXCR4 without affecting CXCL12-CXCR4 ordinary chemotaxis activity or loss of CXCR4 cell surface expression. Importantly, NeoR6 alone does not affect cell migration, indicating that NeoR6 interacts with CXCR4 at a distinct site that is important for HIV-1 entry and mAb 12G5 binding, but not to CXCL12 binding or signaling sites. This is further supported by our modeling studies, showing that NeoR6 and CXCL12 bind to two distinct sites on CXCR4, in contrast with other CXCR4 inhibitors, e.g. T140 and AMD3100. This complementary utilization of chemical, biology, and computation analysis provides a powerful approach for designing anti-HIV-1 drugs without interfering with the natural function of CXCL12/CXCR4 binding.  相似文献   

19.

Background

A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.

Methodology/Principal Findings

The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.

Conclusions/Significance

CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.  相似文献   

20.
The chemokine, stromal-derived factor-1/CXCL12, is expressed by normal and neoplastic tissues and is involved in tumor growth, metastasis, and modulation of tumor immunity. T cell-mediated tumor immunity depends on the migration and colocalization of CTL with tumor cells, a process regulated by chemokines and adhesion molecules. It has been demonstrated that T cells are repelled by high concentrations of the chemokine CXCL12 via a concentration-dependent and CXCR4 receptor-mediated mechanism, termed chemorepulsion or fugetaxis. We proposed that repulsion of tumor Ag-specific T cells from a tumor expressing high levels of CXCL12 allows the tumor to evade immune control. Murine B16/OVA melanoma cells (H2b) were engineered to constitutively express CXCL12. Immunization of C57BL/6 mice with B16/OVA cells lead to destruction of B16/OVA tumors expressing no or low levels of CXCL12 but not tumors expressing high levels of the chemokine. Early recruitment of adoptively transferred OVA-specific CTL into B16/OVA tumors expressing high levels of CXCL12 was significantly reduced in comparison to B16/OVA tumors, and this reduction was reversed when tumor-specific CTLs were pretreated with the specific CXCR4 antagonist, AMD3100. Memory OVA-specific CD8+ T cells demonstrated antitumor activity against B16/OVA tumors but not B16/OVA.CXCL12-high tumors. Expression of high levels of CXCL12 by B16/OVA cells significantly reduced CTL colocalization with and killing of target cells in vitro in a CXCR4-dependent manner. The repulsion of tumor Ag-specific T cells away from melanomas expressing CXCL12 confirms the chemorepellent activity of high concentrations of CXCL12 and may represent a novel mechanism by which certain tumors evade the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号