首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity. Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associated glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis.  相似文献   

2.
Myelin sheath formation depends on appropriate axo-glial interactions that are mediated by myelin-specific surface molecules. In this study, we have used quantitative morphological analysis to determine the roles of the prominent myelin lipids galactocerebroside (GalC) and sulfatide in both central and peripheral myelin formation, exploiting mutant mice incapable of synthesizing these lipids. Our results demonstrate a significant increase in uncompacted myelin sheaths, the frequency of multiple cytoplasmic loops, redundant myelin profiles, and Schmidt-Lanterman incisures in the CNS of these mutant mice. In contrast, PNS myelin appeared structurally normal in these animals; however, at post-natal day 10, greater than 10% of the axons withered and pulled away from their myelin sheaths. These results indicate that GalC and sulfatide are critical to the formation of CNS myelin. In contrast, PNS myelin formation is not dependent on these lipids; however, GalC and sulfatide appear to be instrumental in maintaining Schwann cell-axon contact during a specific developmental window.  相似文献   

3.
In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC), and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP''s diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies.  相似文献   

4.
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron–glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid–protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid β peptide in Alzheimer’s disease, huntingtin in Huntington’s disease, α-synuclein in Parkinson’s disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.  相似文献   

5.
The turnover of cerebroside sulfate (sulfatide) was followed in both microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of Na(2)(35)SO(4). In the adult rats, the specific radioactivity of sulfatide of the microsomal fraction reached a maximum 12 hr after the injection, and after 3 days it was reduced to less than 30% of the maximum. In contrast, the specific radioactivity of the myelin sulfatide did not reach a peak until 3 days after the injection and remained essentially at the same level for as long as 6 months. In the case of 17-day-old rats, the specific radioactivity of myelin sulfatide reached a maximum level around 12 hr after the injection and then appeared to decline. The decline was most marked 2-6 days after the injection, suggesting an apparently rapid turnover of myelin sulfatide. When a correction was made for deposition of newly formed sulfatide, the results indicated that the turnover of myelin in the developing animals was also relatively slow. In vitro experiments with purified myelin and 3'-phosphoadenosine-5'-[(35)S]phosphosulfate showed that myelin does not catalyze the galactocerebroside sulfotransferase reaction. This enzyme was found mainly in the microsomal fraction. In vivo studies suggested that a transfer of sulfatide molecules from the endoplasmic reticulum to myelin might occur. In order to obtain direct evidence for such a transfer, rat brain slices after pulse labeling with Na(2)(35)SO(4) were washed free of the isotope and reincubated with nonlabeled Na(2)SO(4). The specific radioactivity of the microsomal sulfatide declined, with a concomitant rise in the specific radioactivity of the myelin sulfatide. These observations are therefore consistent with the postulate that myelin sulfatide is probably synthesized in the endoplasmic reticulum.  相似文献   

6.
The collective properties of the lipids that form biological membranes give rise to a very high level of lateral organization within the membranes. Lipid-driven membrane organization allows the segregation of membrane-associated components into specific lipid rafts, which function as dynamic platforms for signal transduction, protein processing, and membrane turnover. A number of events essential for the functional integrity of the nervous system occur in lipid rafts and depend on lipid raft organization. Alterations of lipid composition that lead to abnormal lipid raft organization and consequent deregulation of lipid raft-dependent signaling are often associated with neurodegenerative diseases. The amyloidogenic processing of proteins involved in the pathogenesis of major nervous system diseases, including Alzheimer’s disease and Parkinson’s disease, requires lipid raft-dependent compartmentalization at the membrane level. Improved understanding of the forces that control lipid raft organization will facilitate the development of novel strategies for the effective prevention and treatment of neurodegenerative and age-related brain diseases.  相似文献   

7.
Myelination is a developmentally regulated process whereby myelinating glial cells elaborate large quantities of a specialized plasma membrane that ensheaths axons. The myelin sheath contains an unusual lipid composition in that the glycolipid galactosylceramide (GalC) and its sulfated form sulfatide constitute a large proportion of the total lipid mass. These glycolipids have been implicated in a range of developmental processes such as cell differentiation and myelination initiation, but analyses of mice lacking UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme required for myelin galactolipid synthesis, have more recently demonstrated that the galactolipids more subtly regulate myelin formation. The CGT mutants display a delay in myelin maturation and axo-glial interactions develop abnormally. By interbreeding the CGT mutants with mice that lack myelin-associated glycoprotein, it has been shown that these specialized myelin lipids and proteins act in concert to promote axo-glial adhesion during myelinogenesis. The analysis of the CGT mutants is helping to clarify the roles myelin galactolipids play in regulating the development, and ultimately the function of the myelin sheath.  相似文献   

8.
Effects of Monensin and Colchicine on Myelin Galactolipids   总被引:4,自引:4,他引:0  
Monensin and colchicine have been used in a variety of systems to disrupt functioning of the Golgi apparatus and transport of Golgi-derived vesicles to the plasma membrane. In this study the effects of monensin and colchicine on the synthesis of cerebroside and sulfatide and their appearance in myelin were examined to determine whether these myelin components are processed through the Golgi apparatus. Brain slices from rats 17 days old were incubated with [3H]galactose and [35S]-sulfate to label cerebroside and sulfatide. Myelin was isolated on sucrose density gradients. Fractions highly enriched in cerebroside and sulfatide were prepared from homogenates and myelin fractions by lipid extraction, alkaline methanolysis, and in some cases TLC. Monensin at 0.1 microM had no significant effect on synthesis of these galactolipids as measured by incorporation of [3H]-galactose into cerebroside or [35S]sulfate into sulfatide in homogenates. However, appearance of [35S]sulfatide in the myelin fraction was reduced to 49% of control, while appearance of [3H]cerebroside was not significantly reduced. Colchicine from 1 mM to 0.1 microM had effects similar to monensin, that is, appearance of [35S]sulfatide in myelin was depressed, but again [3H]cerebroside was not affected. Incorporation of [35S]sulfate into sulfatide in homogenate was 93% of control, while appearance of [35S]sulfatide in the myelin fraction was depressed to 58% of control. The inhibition of appearance of sulfatide in myelin by colchicine and monensin is consistent with the view that sulfation of cerebroside occurs in the Golgi and that sulfatide is transported via Golgi-derived vesicles to the forming myelin membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Antibodies are increasingly being used as tools to study the function of cell surface markers. Several types of responses may occur upon the selective binding of an antibody to an epitope on a receptor. Antibody binding may trigger signals that are normally transduced by endogenous ligands. Moreover, antibody binding may activate normal signals in a manner that disrupts a sequence of events that coordinates either differentiation, mitogenesis, or morphogenesis. Alternately, it is possible that binding elicits either a modified signal or no signal. This article focuses on the cascade of events that occur following specific antibody binding to myelin markers expressed by cultured murine oligodendrocytes. Binding of specific antibodies to the oligodendrocyte membrane surface markers myelin/oligodendrocyte glycoprotein (MOG), myelin/oligodendrocyte specific protein (MOSP), galactocerebroside (GalC), and sulfatide on cultured murine oligodendrocytes results in different effects with regard to phospholipid turnover, Ca2+ influxes, and antibody:marker distribution. The consequence of each antibody-elicited cascade of events appears to be the regulation of the cytoskeleton within the oligodendroglial membrane sheets. The antibody binding studies described in this article demonstrate that these myelin surface markers are capable of transducing signals. Since endogenous ligands for these myelin markers have yet to be identified, it is not known if these signals are normally transduced or are a modification of normally transduced signals.  相似文献   

10.
The Role and Metabolism of Sulfatide in the Nervous System   总被引:1,自引:1,他引:0  
3-O-sulfogalactosylceramide or sulfatide is a major component of the myelin sheath in the central and peripheral nervous system. The examination of mice deficient in the sulfatide-synthesizing enzyme, cerebroside sulfotransferase, provided new insight into the role of sulfatide in the differentiation of myelinating cells, formation of the paranodal junction, and myelin maintenance. Although in general regarded as a marker for oligodendrocytes and Schwann cells, sulfatide is also present in astrocytes and neurons. The relatively low amount of sulfatide in neurons can dramatically increase in the absence of the sulfatide-degrading enzyme, arylsulfatase A, as in metachromatic leukodystrophy. Recent advance in the understanding of this disease comes from studies on new transgenic mouse models. Significant changes in sulfatide levels have also been observed more recently in Alzheimer's disease and other diseases, suggesting that sulfatide might be involved in the pathogenesis of these diseases as well. This review summarizes recent studies on the physiological and pathophysiological role of sulfatide using transgenic mice deficient in its synthesis or degradation.  相似文献   

11.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

12.
The molecular organization, interactions, phase state and membrane-membrane interactions of model membranes containing cerebroside (GalCer), sulfatide (Sulf) and myelin basic protein (MBP) were investigated. Sulf shows a larger cross-sectional area than GalCer, in keeping with the lateral electrostatic repulsions in the negatively charged polar head group. The interactions of GalCer with different phospholipids are similar while those with Sulf depend on the phosphoryl choline moiety in the phospholipid. MBP induces a decrease of the phase transition temperature in both lipids but with Sulf this occurs at lower proportions of MBP. In mixtures of Sulf with phosphatidylcholine MBP induces phase separation among Sulf-rich and PC-rich domains. Extensive apposition of bilayers containing Sulf is induced by MBP while GalCer interferes with this process. Few membrane interactions proceed to bilayer merging or whole bilayer fusion and the glycosphingolipids help preserve the membrane integrity.  相似文献   

13.
Axon membrane glycoproteins are essential for neuronal differentiation, although the mechanisms underlying their polarized sorting and organization are poorly understood. We describe here that galectin‐4 (Gal‐4), a lectin highly expressed in gastrointestinal tissues and involved in epithelial glycoprotein transport, is expressed by hippocampal and cortical neurons where it is sorted to discrete segments of the axonal membrane in a microtubule‐ and sulfatide‐dependent manner. Gal‐4 knockdown retards axon growth, an effect that can be rescued by recombinant Gal‐4 addition. This Gal‐4 reduction, as inhibition of sulfatide synthesis does, lowers the presence and clustered organization of axon growth‐promoting molecule NCAM L1 at the axon membrane. Furthermore, we find that Gal‐4 interacts with L1 by specifically binding to LacNAc branch ends of L1 N‐glycans. Impairing the maturation of these N‐glycans precludes Gal‐4/L1 association resulting in a failure of L1 membrane cluster organization. In all, Gal‐4 sorts to axon plasma membrane segments by binding to sulfatide‐containing microtubule‐associated carriers and being bivalent, it organizes the transport of L1, and likely other axonal glycoproteins, by attaching them to the carriers through their LacNAc termini. This mechanism would underlie L1 functional organization on the plasma membrane, required for proper axon growth.  相似文献   

14.
Cyclin‐dependent kinases (CDKs) generally regulate cell proliferation in dividing cells, including neural progenitors. In contrast, an unconventional CDK, Cdk5, is predominantly activated in post‐mitotic cells, and involved in various cellular events, such as microtubule and actin cytoskeletal organization, cell–cell and cell–extracellular matrix adhesions, and membrane trafficking. Interestingly, recent studies have indicated that Cdk5 is associated with several cell cycle‐related proteins, Cyclin‐E and p27kip1. Taking advantage of multiple functionality, Cdk5 plays important roles in neuronal migration, layer formation, axon elongation and dendrite arborization in many regions of the developing brain, including cerebral cortex and cerebellum. Cdk5 is also required for neurogenesis at least in the cerebral cortex. Furthermore, Cdk5 is reported to control neurotransmitter release at presynaptic sites, endocytosis of the NMDA receptor at postsynaptic sites and dendritic spine remodeling, and thereby regulate synaptic plasticity and memory formation and extinction. In addition to these physiological roles in brain development and function, Cdk5 is associated with many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, I will introduce the physiological and pathological roles of Cdk5 in mammalian brains from the viewpoint of not only in vivo phenotypes but also its molecular and cellular functions.  相似文献   

15.
Neuronal electrical impulse propagation is facilitated by the myelin sheath, a compact membrane surrounding the axon. The myelin sheath is highly enriched in galactosylceramide (GalCer) and its sulfated derivative sulfatide. Over 50% of GalCer and sulfatide in myelin is hydroxylated by the integral membrane enzyme fatty acid 2-hydroxylase (FA2H). GalCer hydroxylation contributes to the compact nature of the myelin membrane, and mutations in FA2H result in debilitating leukodystrophies and spastic paraparesis. We report here the 2.6 Å crystal structure of sphingolipid α-hydroxylase (Scs7p), a yeast homolog of FA2H. The Scs7p core is composed of a helical catalytic cap domain that sits atop four transmembrane helices that anchor the enzyme in the endoplasmic reticulum. The structure contains two zinc atoms coordinated by the side chains of 10 highly conserved histidines within a dimetal center located near the plane of the cytosolic membrane. We used a yeast genetic approach to confirm the important role of the dimetal-binding histidines in catalysis and identified Tyr-322 and Asp-323 as critical determinants involved in the hydroxylase reaction. Examination of the Scs7p structure, coupled with molecular dynamics simulations, allowed for the generation of a model of ceramide binding to Scs7p. Comparison of the Scs7p structure and substrate-binding model to the structure of steroyl-CoA desaturase revealed significant differences in the architecture of the catalytic cap domain and location of the dimetal centers with respect to the membrane. These observations provide insight into the different mechanisms of substrate binding and recognition of substrates by the hydroxylase and desaturase enzymes.  相似文献   

16.
Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.  相似文献   

17.
To investigate the effects of a critical enzyme, cerebroside sulfotransferase (CST), involving sulfatide biosynthesis on lipid (particularly sphingolipid) homeostasis, herein, we determined the lipidomes of brain cortex and spinal cord from CST null and heterozygous (CST?/? and CST+/?, respectively) mice in comparison to their wild-type littermates by multi-dimensional mass spectrometry-based shotgun lipidomics. As anticipated, we demonstrated the absence of sulfatide in the tissues from CST?/? mice and found that significant reduction of sulfatide mass levels was also present, but in an age-dependent manner, in CST+/? mice. Unexpectedly, we revealed that the profiles of sulfatide species in CST+/? mice were significantly different from that of littermate controls with an increase in the composition of species containing saturated and hydroxylated fatty acyl chains. Contrary to the changes of sulfatide levels, shotgun lipidomics analysis did not detect significant changes of the mass levels of other lipid classes examined. Taken together, shotgun lipidomics analysis demonstrated anticipated sulfatide mass deficiency in CST defect mouse brain and revealed novel brain lipidome homeostasis in these mice. These results might provide new insights into the role of CST in myelin function.  相似文献   

18.
The effects of myelin basic protein on the aggregation, lipid bilayer merging, intercommunication of aqueous compartments and leakage of small unilamellar vesicles of egg phosphatidylcholine containing different proportions of galactocerebroside and sulfatide were investigated. This was performed employing light scattering, absorbance changes and fluorescence assays (resonance energy transfer, Terbium/dipicolinic acid assay and carboxyfluorescein release). The apposition of membranes rapidly induced by myelin basic protein is enhanced by sulfatide but reduced by galactocerebroside compared to vesicles of egg phosphatidylcholine alone. On the other hand, the presence of either glycosphingolipid in the membrane interferes with the induction by myelin basic protein of lipid bilayer merging, subsequent fusion and changes of the membrane permeability. Our results support an important modulation by sulfatide and galactocerebroside on the interactions among membranes induced by myelin basic protein, depending on the relative proportions of the glycosphingolipids and phosphatidylcholine.  相似文献   

19.
Myelin is a multilamellar membrane structure primarily composed of lipids and myelin proteins essential for proper neuronal function. Since myelin is a target structure involved in many pathophysiological conditions such as metabolic, viral, and autoimmune diseases and genetic myelin disorders, a reliable myelin detection technique is required that is equally suitable for light- and electron-microscopic analysis. Here, we report that single myelinated fibers are specifically stained by the gold phosphate complex, Black gold, which stains myelin in the brain, spinal cord, and peripheral nerve fibers in a reliable manner. Electron-microscopic and morphometric analyses have revealed that gold particles are equally distributed in the inner, compact, and outer myelin layers. In contrast to Luxol fast blue, the gold dye stains proteinase-sensitive myelin structures, indicating its selective labeling of myelin-specific proteins. Aiming at defining the target of gold staining, we performed staining in several mouse myelin mutants. Gold complex distribution and myelin staining in MBP−/−/shiverer mouse mutants was comparable with that seen in wild-type mice but revealed a more clustered Black gold distribution. This gold staining method thus provides a sensitive and specific high-resolution marker for both central and peripheral myelin sheaths; it also allows the quantitative analysis of myelinated fibers at the light- and electron-microscopic level suitable for investigations of myelin and axonal disorders. This study was supported by grants from the International Human Frontier Science Program Organization (HFSPO, to N.E.S.) and the Danone Institute (to N.E.S. and I.Y.E.).  相似文献   

20.
Myelin-forming glia are highly polarized cells that synthesize as an extension of their plasma membrane, a multilayered myelin membrane sheath, with a unique protein and lipid composition. In most cells polarity is established by the polarized exocytosis of membrane vesicles to the distinct plasma membrane domains. Since myelin is composed of a stack of tightly packed membrane layers that do not leave sufficient space for the vesicular trafficking, we hypothesize that myelin does not use polarized exocytosis as a primary mechanism, but rather depends on lateral transport of membrane components in the plasma membrane. We suggest a model in which vesicle-mediated transport is confined to the cytoplasmic channels, from where transport to the compacted areas occurs by lateral flow of cargo within the plasma membrane. A diffusion barrier that is formed by MBP and the two adjacent cytoplasmic leaflets of the myelin bilayers acts a molecular sieve and regulates the flow of the components. Finally, we highlight potential mechanism that may contribute to the assembly of specific lipids within myelin. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号