首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artesunate is a semi-synthetic derivative of artemisinin used to treat malaria, and has been shown to possess anti-inflammatory activity. In this study, we have investigated the effect of artesunate on PGE2 production/COX-2 protein expression in LPS + IFNγ-activated BV2 microglia. To further understand the mechanism of action of this compound, we investigated its interference with NF-κB and p38 MAPK signalling pathways. PGE2 production was determined using EIA, while protein expressions of inflammatory targets like COX-2, mPGES-1, IκB, p38 and MAPKAPK2 were evaluated using western blot. An NF-κB-bearing luciferase reporter gene assay was used to test the effect of artesunate on NF-κB-mediated pro-inflammatory gene expression in HEK293 cells stimulated with TNFα (1 ng/ml). Artesunate (2 and 4 μM), significantly (p <0.01) suppressed PGE2 production in LPS + IFNγ-activated BV2 microglia. This effect was found to be mediated via reduction in COX-2 and mPGES-1 proteins. Artesunate also produced significant inhibition of TNFα and IL-6 production in activated BV2 microglia. Further investigations showed that artesunate (0.5–4 μM) significantly (p <0.001) reduced NF-κB-driven luciferase expression, and inhibited IκB phosphorylation and degradation, through inhibition of IKK. Artesunate inhibited phosphorylation of p38 MAPK and its substrate MAPKAPK2 following stimulation of microglia with LPS + IFNγ. Taken together, we have shown that artesunate prevents neuroinflammation in BV2 microglia by interfering with NF-κB and p38 MAPK signalling.  相似文献   

2.
3.

Background

Tiliroside is a dietary glycosidic flavonoid which has shown in vivo anti-inflammatory activity. This study is aimed at evaluating the effect of tiliroside on neuroinflammation in BV2 microglia, and to identify its molecular targets of anti-neuroinflammatory action.

Methods

BV2 cells were stimulated with LPS + IFNγ in the presence or absence of tiliroside. TNFα, IL-6, nitrite and PGE2 production was determined with ELISA, Griess assay and enzyme immunoassay, respectively. iNOS, COX-2, phospho-p65, phospho-IκBα, phospho-IKKα, phospho-p38, phospho-MK2, phosopho-MKK3/6 and TRAF-6 were determined by western blot analysis. NF-κB activity was also investigated using a reporter gene assay in HEK293 cells. LPS-induced microglia ROS production was tested using the DCFDA method, while HO-1 and Nrf2 activation was determined with western blot.

Results

Tiliroside significantly suppressed TNFα, IL-6, nitrite and PGE2 production, as well as iNOS and COX-2 protein expression from LPS + IFNγ-activated BV2 microglia. Further mechanistic studies showed that tiliroside inhibited neuroinflammation by targeting important steps in the NF-κB and p38 signalling in LPS + IFNγ-activated BV2 cells. This compound also inhibited LPS-induced TRAF-6 protein expression in BV2 cells. Antioxidant activity of tiliroside in BV2 cells was demonstrated through attenuation of LPS + IFNγ-induced ROS production and activation of HO-1/Nrf2 antioxidant system.

Conclusions

Tiliroside inhibits neuroinflammation in BV2 microglia through a mechanism involving TRAF-6-mediated activation of NF-κB and p38 MAPK signalling pathways. These activities are possibly due, in part, to the antioxidant property of this compound.

General Significance

Tiliroside is a potential novel natural compound for inhibiting neuroinflammation in neurodegenerative disorders.  相似文献   

4.
Summary Hydroxyhydroquinone or 1,2,4-benzenetriol (BT) detected in the beverages has a structure that coincides with the water-soluble form of a sesame lignan, sesamol. We previously showed that sesame antioxidants had neuroprotective abilities due to their antioxidant properties and/or inducible nitric oxide synthase (iNOS) inhibition. However, studies show that BT can induce DNA damage through the generation of reactive oxygen species (ROS). Therefore, we were interested to investigate the neuroprotective effect of BT in vitro and in vivo. The results showed that instead of enhancing free radical generation, BT dose-dependently (10–100 μM) attenuated nitrite production, iNOS mRNA and protein expression in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. BT significantly reduced LPS-induced NF-κB and p38 MAPK activation. It also significantly reduced the generation of ROS in H2O2-induced BV-2 cells and in H2O2-cellfree conditions. The neuroprotective effect of BT was further demonstrated in the focal cerebral ischemia model of Sprague–Dawley rat. Taken together, the inhibition of LPS-induced nitrite production might be due to the suppression of NF-κB, p38 MAPK signal pathway and the ROS scavenging effect. These effects might help to protect neurons from the ischemic injury.  相似文献   

5.

Selenium is an essential element in human and animal metabolism integrated into the catalytic site of glutathione peroxidase (GPX1), an antioxidant enzyme that protects cells from damage caused by reactive oxygen species (ROS). Oxidative stress refers the imbalance between ROS and antioxidant defense systems. It generates alterations of DNA, proteins and lipid peroxidation. The imbalance occurs particularly during ischemia and lack of postmortem perfusion. This mechanism is of relevance in transplant organs, affecting their survival. The aim of this research is to evaluate the effect of seleno-methionine (SeMet) as a protective agent against postmortem ischemia injury in transplant organs. Wistar rats were orally administered with SeMet. After sacrifice, liver, heart and kidney samples were collected at different postmortem intervals (PMIs). SeMet administration produced a significant increase of Se concentration in the liver (65%, p?<?0.001), heart (40%, p?<?0.01) and kidneys (45%, p?<?0.05). Levels of the oxidative stress marker malondialdehyde (MDA) decreased significantly compared to control in the heart (0.21?±?0.04 vs. 0.12?±?0.02 mmol g?1) and kidneys (0.41?±?0.02 vs. 0.24?±?0.03 mmol g?1) in a PMI of 1–12 h (p?<?0.01). After SeMet administration for 21 days, a significant increase in GPX1 activity was observed in the liver (80%, p?<?0.001), kidneys (74%, p?<?0.01) and heart (35%, p?<?0.05). SeMet administration to rats significantly decreased the oxidative stress in the heart, liver and kidneys of rats generated by postmortem ischemia.

  相似文献   

6.
We examined how lipopolysaccharide (LPS) and interferon gamma (IFN-γ), known to differentially activate microglia, affect the expression of G protein-coupled receptor 55 (GPR55), a novel cannabinoid receptor. We found that GPR55 mRNA is significantly expressed in both primary mouse microglia and the BV-2 mouse microglial cell line, and that LPS down-regulates this message. Conversely, IFN-γ slightly decreases GPR55 mRNA in primary microglia, while it upregulates this message in BV-2 cells. Moreover, the GPR55 agonist, lysophosphatidylinositol, increases ERK phosphorylation in BV-2 stimulated with IFN-γ, in correlation with the increased amount of GPR55 mRNA. Remarkably, these stimuli-induced changes in GPR55 expression are similar to those observed with CB2-R, suggesting that both receptors might be involved in neuroinflammation and that their expression is concomitantly controlled by the state of microglial activation.  相似文献   

7.
《Chronobiology international》2013,30(9):1174-1180
Disturbances in circadian rhythms are commonly observed in the development of several medical conditions and may also be involved in the pathophysiology of sepsis. Melatonin, with its antioxidative and anti-inflammatory effects, is known to modulate the response to endotoxemia. In this paper, we investigated the circadian variation with or without melatonin administration in an experimental endotoxemia model based on lipopolysaccharide (LPS). Sixty male Sprague-Dawley rats were assigned to six groups receiving an intraperitoneal injection of either LPS (5?mg/kg), LPS?+?melatonin (1?mg/kg), or LPS?+?melatonin (10?mg/kg) at either daytime or nighttime. Superoxide dismutase (SOD) was analyzed in liver samples collected after decapitation. Furthermore, inflammatory plasma markers (cytokines interleukin [IL]-6, IL-10) and oxidative plasma markers (ascorbic acid [AA], dehydroascorbic acid [DHA], and malondialdehyde [MDA]) were analyzed before and 5?h after the onset of endotoxemia. There were significant higher levels of SOD (p?<?0.05), IL-6 (p?<?0.01), and IL-10 (p?<?0.05) during nighttime endotoxemia compared with daytime. At daytime, melatonin 1 and 10?mg reduced the levels of MDA and increased SOD, IL-6, IL-10, and DHA (p?<?0.05). At nighttime, melatonin reduced the levels of MDA and increased DHA (p?<?0.05). Additionally, 10?mg melatonin resulted in lower levels of AA during daytime (p?<?0.05). No dose relationship of melatonin was observed. The results showed that the response induced by experimental endotoxemia was dependent on time of day. Melatonin administration modulated the inflammatory and oxidative stress responses induced by endotoxemia and also resulted in higher levels of antioxidants during daytime. The effect of circadian time on the endotoxemia response and possible modulatory effects of melatonin need further investigations in a human endotoxemia model.  相似文献   

8.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

9.
Background5-O-methylvisammioside (MeV), also known as 4′-O-β-D-glucosyl-5-O-methylvisamminol, is a conventional marker compound for quality control of roots of Saposhnikovia diviaricata (Radix Saposhnikoviae), which exhibits anti-inflammatory and neuroprotective activities.PurposeAccording to the activity of MeV, we speculated that MeV may have antidepressant effect on LPS induced depression, and further explored its mechanism.Study DesignFirst, to explore the effect and mechanism of MeV on LPS-induced depression in mice, and then to further explore the effect and mechanism of MeV on LPS-activated BV-2 microglia.MethodsBy the OFT, EPM, TST and FST behavioral tests, to explore the effect of MeV pretreatment on the behavior of LPS-induced depression mice. ELISA and Griess method were used to detect the changes of the serum TNF-α and IL-6 levels, the hippocampus SOD and MDA levels, and the NO, SOD, MDA, TNF-α and IL-6 levels in the culture medium of LPS-stimulated BV-2 microglia. Western blot was used to analyze the protein expression in the Nf-κB/IκB-α and BDNF/TrkB pathway in the hippocampus of mice and BV-2 microglia.ResultsMeV (4 mg/kg, i.p.) pretreatment significantly improves the activity and exploration ability of LPS-induced depression mice, and reduces the immobility time. MeV inhibited the production of pro-inflammatory cytokines in the serum of mice induced by LPS, such as IL-6 and TNF-α. MeV also increased the levels of SOD and reduces the expression of MDA in the hippocampus, thus promoting the alleviation of depressive symptoms in mice. Western blotting analysis showed that the antidepressant activity of MeV was related to the decrease of Nf-κB nuclear transport, the inhibition of IκB-α phosphorylation, and the increase of BDNF and TrkB expression. MeV (40 μM) significantly reduced the contents of NO, MDA, TNF-α and IL-6 in the culture medium of LPS-stimulated BV-2 microglia, and increased the content of SOD.ConclusionMeV can regulate the neurotrophic factors in the mouse brain, reduce the content of inflammatory factors by the Nf-κB/IκB-α pathway, improve oxidative stress, and inhibit the excessive activation of LPS-stimulated BV -2 microglia. It effectively reversed the depression-like behAavior induced by LPS in mice.  相似文献   

10.
The present investigation evaluates the changes in the levels of antioxidant enzymes, lipid peroxidation (LPO), and protein carbonyl content (PCC) in brain mitochondria following thiamine deficiency (TD). The study was carried out on Mus musculus allocated into three groups, namely control and thiamine-deficient group for 8 (TD 8) and 10 (TD 10) days. The LPO was measured in terms of reduced glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were measured biochemically. A significant increase in the TBARS (p?<?0.0001) and PCC (p?<?0.001) levels in group II (TD 8) and group III (TD 10) animals was observed in comparison to controls. The GSH levels were found to be reduced in both the treated groups compared to the control. A significant reduction in the activities of SOD was also observed in group II (p?<?0.01) and group III (p?<?0.0001) animals in comparison to the control. Enzymatic activities of CAT (p?<?0.001) and GPx (p?<?0.05) were found to be significantly reduced in group III (TD 10) in comparison to the control. In conclusion, reduction in the activities of antioxidant enzymes as well as an increase in LPO and PCC following TD implies oxidative stress in brain mitochondria that may further leads to neurodegeneration.  相似文献   

11.

The effects of astaxanthin (AST) were evaluated on oxidative mediators, neuronal apoptosis, and autophagy in functional motor recovery after spinal cord injury (SCI). Rats were divided into three groups of sham, SCI?+?DMSO (dimethyl sulfoxide), and SCI?+?AST. Rats in the sham group only underwent a laminectomy at thoracic 8–9. While, the SCI?+?DMSO and SCI?+?AST groups had a compression SCI with an aneurysm clip. Then, this groups received an intrathecal (i.t.) injection of 5% DMSO and AST (10 μl of 0.005 mg/kg), respectively. The rat motor functions were assessed weekly until the 28th day using a combined behavioral score (CBS). Total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in spinal tissue to evaluate oxidative stress-related parameters. Besides, autophagy-related proteins (P62, LC3B, and Beclin1) and apoptosis-associated proteins (Bax and Bcl2) were determined using western blotting on the 1st and 7th days after surgery. Hematoxylin–eosin and Fluoro-Jade B staining were performed to detect the histological alterations and neuronal degeneration. As the result, treatment with AST potentially attenuated rat CBS scores (p?<?0.001) towards a better motor performance. AST significantly reduced the spinal level of oxidative stress by increasing TAC, SOD, and GPx, while decreasing MDA (p?<?0.001). Furthermore, AST treatment remarkably upregulated expression of LC3B (p?<?0.001), and Beclin1 (p?<?0.05) in the spinal cord, but downregulated P62 (p?<?0.05) and the Bax/Bcl2 ratio (p?<?0.001). Consequently, AST reduced SCI-induced histological alterations and neuronal degeneration (p?<?0.001). In conclusion, AST can improve motor function after SCI by reducing oxidative stress/apoptosis and increasing neuronal autophagy.

  相似文献   

12.
《Phytomedicine》2014,21(3):298-306
Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Therefore, novel therapeutics suppressing microglia over-activation could prove useful for neuroprotection in inflammation-mediated neurodegenerative diseases. DSF-52 is a novel sesquiterpene dimer compound isolated from medical plant Artemisia argyi by our group. In this study, we investigated whether DSF-52 inhibited the neuroinflammatory responses in lipopolysaccharide (LPS)-activated microglia. Our findings showed that DSF-52 inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), as well as mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein-1α (MIP-1α) in LPS-activated BV-2 microglia. Moreover, DSF-52 markedly up-regulated mRNA levels of anti-inflammatory cytokine IL-10. Mechanism study indicated that DSF-52 suppressed Akt/IκB/NF-κB inflammation pathway against LPS treatment. Also, DSF-52 down-regulated the phosphorylation levels of JNK and p38 MAPKs, but not ERK. Furthermore, DSF-52 blocked Jak2/Stat3 dependent inflammation pathway through inhibiting Jak2 and Stat3 phosphorylation, as well as Stat3 nuclear translocation. We concluded that the inhibitory ability of DSF-52 on microglia-mediated neuroinflammation may offer a novel neuroprotective modality and could be potentially useful in inflammation-mediated neurodegenerative diseases.  相似文献   

13.
Microglia are immune cells that maintain brain homeostasis at a resting state by surveying the environment and engulfing debris. However, in some pathological conditions, microglia can produce neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO) that lead to neuronal degeneration. Inflammation-induced calcium (Ca2+) signaling is thought to underlie this abnormal activation of microglia, but the mechanisms are still obscure. We previously showed that combined application of lipopolysaccharide and interferon γ (LPS/IFNγ) induced-production of NO in microglia from wild-type (WT) mice is significantly reduced in microglia from transient receptor potential melastatin 2 (TRPM2)-knockout (KO) mice. Here, we found that LPS/IFNγ produced a late-onset Ca2+ signaling in WT microglia, which was abolished by application of the NADPH oxidase inhibitor diphenylene iodonium (DPI) and ML-171. In addition, pharmacological blockade or gene deletion of TRPM2 channel in microglia did not show this Ca2+ signaling. Furthermore, pharmacological manipulation and Western blotting revealed that Ca2+ mobilization, the proline-rich tyrosine kinase 2 (Pyk2), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) contributed to TRPM2-mediated LPS/IFNγ-induced activation, while the extracellular signal-regulated protein kinase (ERK) did not. These results suggest that LPS/IFNγ activates TRPM2-mediated Ca2+ signaling, which in turn increases downstream p38 MAPK and JNK signaling and results in increased NO production in microglia.  相似文献   

14.
BackgroundNIMA-related kinase-7 (NEK7) is a serine/threonine kinase that drives cell-cycle dynamics by modulating mitotic spindle formation and cytokinesis. It is also a crucial modulator of the pro-inflammatory effects of NOD-like receptor 3 (NLRP3) inflammasome. However, the role of NEK7 in microglia/macrophages post-spinal cord injury (SCI) is not well defined.MethodsIn this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse SCI model, NEK7 siRNAs were administered intraspinally. For in vitro analysis, BV-2 microglia cells with NEK7-siRNA were stimulated with 1 μg/ml lipopolysaccharide (LPS) and 2 mM Adenosine triphosphate (ATP).ResultsHere, we found that the mRNA and protein levels of NEK7 and NLRP3 inflammasomes were upregulated in spinal cord tissues of injured mice and BV-2 microglia cells exposed to Lipopolysaccharide (LPS) and Adenosine triphosphate (ATP). Further experiments established that NEK7 and NLRP3 interacted in BV-2 microglia cells, an effect that was eliminated following NEK7 ablation. Moreover, NEK7 ablation suppressed the activation of NLRP3 inflammasomes. Although NEK7 inhibition did not significantly improve motor function post-SCI in mice, it was found to attenuate local inflammatory response and inhibit the activation of NLRP3 inflammasome in microglia/macrophages of the injured spinal cord.ConclusionNEK7 amplifies NLRP3 inflammasome pro-inflammatory signaling in BV-2 microglia cells and mice models of SCI. Therefore, agents targeting the NEK7/NLRP3 signaling offers great promise in the treatment of inflammatory response post-SCI.  相似文献   

15.
The levels of blood lipid peroxidation, glutathione peroxidase, reduced glutathione, and vitamin C were used to follow the level of oxidative damage caused by 2.45 GHz electromagnetic radiation in rats. The possible protective effects of selenium and L-carnitine were also tested and compared to untreated controls. Thirty male Wistar Albino rats were equally divided into five groups, namely Groups A1 and A2: controls and sham controls, respectively; Group B: EMR; Group C: EMR + selenium, Group D: EMR + L-carnitine. Groups B–D were exposed to 2.45 GHz electromagnetic radiation during 60 min/day for 28 days. The lipid peroxidation levels in plasma and erythrocytes were significantly higher in group B than in groups A1 and A2 (p?<?0.05), although the reduced glutathione and glutathione peroxidase values were slightly lower in erythrocytes of group B compared to groups A1 and A2. The plasma lipid peroxidation level in group A2 was significantly lower than in group B (p?<?0.05). Erythrocyte reduced glutathione levels (p?<?0.01) in group B; erythrocyte glutathione peroxidase activity in group A2 (p?<?0.05), group B (p?<?0.001), and group C (p?<?0.05) were found to be lower than in group D. In conclusion, 2.45 GHz electromagnetic radiation caused oxidative stress in blood of rat. L-carnitine seems to have protective effects on the 2.45-GHz-induced blood toxicity by inhibiting free radical supporting antioxidant redox system although selenium has no effect on the investigated values.  相似文献   

16.
Abstract

Tocopherylquinone (TQ) is formed in the antioxidant action of tocopherol (T). TQ was found in human subjects and it was observed that the ratio αTQ/ αT increased in general with increasing oxidative stress. TQ is reduced to tocopheryl hydroquinone (TQH2) but the ratio TQH2/TQ in vivo has not been reported. TQH2 acts as a potent radical-scavenging antioxidant. αTQH2 is more reactive toward radicals than ubiquinol, a reduced form of coenzyme Q, and αT. The overall efficacy of TQH2 as an antioxidant is determined by the fate of semiquinone radical formed from TQH2 as well as the reactivity toward oxygen radicals. Partly substituted γTQ, but not αTQ, exerts cytotoxicity by both redox cycling and reaction with protein thiols and glutathione.  相似文献   

17.
Five new quinic acid derivatives (15), together with 10 known quinic acid derivatives (615), were isolated from the MeOH extract of Pimpinella brachycarpa (Umbelliferae). Their structures were established on the basis of spectroscopic analyses including extensive 2D NMR studies (COSY, HMQC and HMBC). Isolated compounds 115 were evaluated for their inhibitory activities on nitric oxide (NO) production in an activated murine microglial cell line. Compounds 2, 3, 8 and 11 significantly inhibited NO production without high cell toxicity in lipopolysaccharide (LPS)-activated BV-2 cells, a microglia cell line (IC50 = 4.66, 12.52, 9.04 and 12.11 μM, respectively).  相似文献   

18.
19.
《Epigenetics》2013,8(3):261-269
Lung function is a strong predictor of mortality. While inflammatory markers have been associated with lung function decrease, pathways are still poorly understood and epigenetic changes may participate in lung function decline mechanisms. We studied the cross-sectional association between DNA methylation in nine inflammatory genes and lung function in a cohort of 756 elderly men living in the metropolitan area of Boston. Participants donated a blood sample for DNA methylation analysis and underwent spirometry at each visit every 3 to 5 y from 1999–2006. We used separate multivariate mixed effects regression models to study the association between each lung function measurement and DNA methylation within each gene. Decreased CRAT, F3 and TLR2 methylation was significantly associated with lower lung function. One interquartile range (IQR) decrease in DNA methylation was associated with lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), respectively by 2.94% (p < 10?4) and 2.47% (p < 10?3) for F3, and by 2.10% (p < 10?2) and 2.42% (p < 10?3) for TLR2. Decreased IFNγ and IL6 methylation was significantly associated with better lung function. One IQR decrease in DNA methylation was associated with higher FEV1 by 1.75% (p = 0.02) and 1.67% (p = 0.05) for IFNγ and IL6, respectively. These data demonstrate that DNA methylation may be part of the biological processes underlying the lung function decline and that IFNγ and IL6 may have ambivalent roles through activation of negative feedback.  相似文献   

20.
《Biomarkers》2013,18(8):670-678
The need for minimally invasive biomarkers to predict the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis is a priority. Oxidative stress and mitochondrial dysfunction contribute in this physiopathological process. The aim of this study was to analyze the potential role of erythrocytes as surrogate biomarkers of hepatic mitochondrial oxidative status in an animal model under different dietary oxidative conditions. Interestingly, we found that erythrocyte antioxidant status correlated with triglyceride content (p?<?0.05–p?<?0.001), thiobarbituric acid reactive species levels (p?<?0.001) and with liver mitochondrial antioxidant levels (p?<?0.001). These data suggest that erythrocyte antioxidant defenses could be used as sensitive and minimally invasive biomarkers of mitochondrial status in diverse oxidative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号