首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode during intense neuronal activity. The dephosphorylation of Ser774 on dynamin I is essential for triggering of ADBE, as is its subsequent rephosphorylation by glycogen synthase kinase 3 (GSK3). We show that in primary cultures of cerebellar granule neurons the protein kinase Akt phosphorylates GSK3 during intense neuronal activity, ensuring that GSK3 is inactive during intense stimulation to aid dynamin I dephosphorylation. Furthermore, when a constitutively active form of Akt was overexpressed in primary neuronal cultures, ADBE was inhibited with no effect on clathrin-mediated endocytosis. Thus Akt has two major regulatory roles (i) to ensure efficient dynamin I dephosphorylation via acute activity-dependent inhibition of GSK3 and (ii) to negatively regulate ADBE when activated in the longer term. This is the first demonstration of a role for Akt in SV recycling and suggests a key role for this protein kinase in modulating synaptic strength during elevated neuronal activity.  相似文献   

2.
3.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

4.
Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca2+]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca2+]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.  相似文献   

5.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

6.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

7.
The regulation of activity-dependent bulk endocytosis, the dominant mode of membrane retrieval in response to intense neuronal activity, is poorly understood. In this JCB issue, Peng et al. (2021. J. Cell. Biol. https://doi.org/10.1083/jcb.202011028) propose a novel molecular mechanism for the coordination of activity-dependent bulk endocytosis that builds on Minibrain kinase and its presynaptic substrate synaptojanin-1.

Brain function necessitates sustained synaptic transmission regardless of activity demands. The preservation of synaptic transmission depends on the efficient (re)formation of synaptic vesicles (SVs) by endocytosis after their insertion into the synaptic plasma membrane during neuronal stimulation (1). During mild and sparse stimulation, the dominant endocytosis modes are ultrafast endocytosis and clathrin-mediated endocytosis (CME; 1). Both modes appear to have a fixed rate and limited capacity, and therefore cannot adapt to high frequency stimulations that accumulate inserted SV membranes at the presynaptic terminal. Under these conditions, a different endocytosis mode is predominantly used, termed activity-dependent bulk endocytosis (ADBE). ADBE retrieves large areas of the presynaptic plasma membrane to form bulk endosomes, from which new SVs are then generated (1). This form of endocytosis is particularly common in synapses that operate with high rates of neurotransmission, e.g., ribbon synapses of sensory neurons. ADBE contributes to presynaptic plasticity, having recently been demonstrated to control neurotransmitter release probability (2). Importantly, defects in ADBE and SV endocytosis in general have profound consequences on neuronal function and survival, with dysfunction linked to a series of neurodevelopmental disorders (3).Considering the importance of ADBE to brain physiology and pathology, it is essential to understand the molecular machinery that controls this process and synchronizes it with other synaptic events. Amazingly, despite the fact that ADBE was described in the early 1970s, its regulation remains mysterious. Several protein kinases and phosphatases that contribute to regulation of CME and other endocytosis modes (1) may also contribute to ADBE. For example, the calcium/calmodulin-dependent phosphatase calcineurin activates ADBE, working with glycogen synthase kinase-3 to provide bidirectional control via the phosphorylation of specific substrates (4). However, many presynaptic proteins are calcineurin substrates, suggesting other protein kinases may perform complementary roles.In a recent paper, Chang and colleagues (5) present data in support of calcineurin and Minibrain (Mnb) as coregulators of ADBE in fruit flies via bidirectional control of the phosphorylation status of synaptojanin (Synj)-1 phosphatase. The authors argue that the Synj-1 phosphorylation status coordinates the activity-dependent balance between CME versus ADBE (Fig. 1). Namely, during mild stimulation CME is promoted by Mnb, while ADBE is inhibited. During intense stimulation, dephosphorylation of Synj-1 by calcineurin is required to activate ADBE (Fig. 1). An interesting novel aspect arises from examination of domain-specific Synj-1 mutants: its 4′-phosphatase SAC1 activity supports ADBE, while its 5′-phosphatase (5′-PPase) domain suppresses it. The Bin/Amphiphysin/Rvs domain protein endophilin-A has been implicated in ADBE (6); however, a Synj-1 mutant lacking the endophilin-A binding proline-rich domain (PRD) had no effect. Further studies may therefore be required to dissect synaptojanin-1–dependent and –independent roles of endophilin in ADBE.Open in a separate windowFigure 1.Control of CME and ADBE via Minibrain kinase and calcineurin phosphatase. Synj-1 is phosphorylated by Mnb kinase on Ser1029 on its PRD. This promotes the 5′-PPase activity of Synj-1 and inhibits association with the endocytosis protein endophilin-A. These events promote CME. During intense neuronal activity, calcineurin (CaN) is activated and dephosphorylates Synj-1. This reduces 5′-PPase activity and promotes association with endophilin. The dephosphorylation also promotes ADBE via inhibition of Synj-1 5′-PPase activity. This phospho-regulation of the endophilin interaction does not impact ADBE. The SAC activity of Synj-1 is essential for ADBE and is unaffected by phosphorylation.Collectively, the data by Chang and colleagues consolidate the key role played by calcineurin in ADBE and identify Mnb as a new ADBE protein kinase. Intriguingly, the number of synapses performing ADBE is increased in Mnb hypomorphs, suggesting there is additional endocytic capacity that can be recruited on demand. There also appears to be bidirectional control of ADBE via Mnb, since Mnb overexpression represses this pathway. Notably, the enzyme activities of Synj-1 are regulated by Mnb- and calcineurin-dependent turnover of phosphorylation of S1029 (Fig. 1; 7, 8). In mammals, cyclin-dependent kinase 5 is suggested to control Synj-1 activity (9); therefore, it important to confirm whether Synj-1 is also phosphorylated by the Mnb orthologue, dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), in mammals. A key test of the causality of activity-dependent phosphorylation events is whether they occur to the same stimulation intensities as the biological event. In this study, activity-dependent dephosphorylation of S1029 on Synj-1 was not demonstrated; instead, an absence of activity-dependent Mnb phosphorylation was observed. In mitigation, the authors convincingly demonstrated that Synj-1 phosphorylation increased during prolonged stimulus in the absence of calcineurin function.This work also confirmed a key role for the phospholipid PI(4,5)P2 in ADBE (1). Interestingly, it further revealed a hitherto undiscovered role for the SAC domain, but not the 5′-PPase domain of Synj-1 in ADBE. This latter activity is essential for other forms of endocytosis, such as CME and ultrafast endocytosis, with SAC activity required for clathrin-dependent vesicle generation from endosomes (10, 11). In addition to potential roles for Synj-1 SAC activity discussed by Chang and colleagues, a more provocative (and simplistic) explanation is that the end product, phosphatidylinositol (PI) itself, is important for ADBE. In support, the neurons without diacylglycerol kinase (which generates the PI precursor phosphatidic acid) display SV endocytosis defects that are exacerbated during high activity (12).A lack of accurate assays that monitor ADBE in both time and space has limited research in small nerve terminals for decades. In this work, ADBE is evoked and monitored using multiple approaches. This is important, since there is no simple method to monitor ADBE; therefore, it requires cross corroboration wherever possible. This study was greatly assisted via the use of genetically tractable model organisms, allowing precise intervention to abate the function of key proteins and enzymes in vivo. Yet, the trade-off is the relative imprecision of stimulation to evoke SV turnover, with prolonged periods of stimulation (and parallel inhibition of CME) required to evoke and isolate ADBE.Since Peng et al. shed light on new aspects of ADBE regulation, further questions can now be envisioned. In particular, how localized production and degradation of membrane phospholipids coordinate the temporal and spatial triggering of specific endocytosis modes. The essential role for calcineurin in most forms of endocytosis suggests where and when dephosphorylation events occur at the presynapse may be critical in the recruitment of discrete SV reformation pathways. Furthermore, Mnb/DYRK1A is linked to brain pathologies, including Down’s syndrome and autism-spectrum disorders, which is yet to be explored. These and other questions will no doubt drive further studies of remarkable plasticity when it comes to formation of new SVs and synaptic transmission, and how they organize and govern our brain activity.  相似文献   

8.
The interplay between Ca2+ efflux mechanisms of the plasma membrane (PM) and transient changes of the cytosolic concentration of ionized calcium ([Ca2+]i) was studied in suspensions of human neutrophils loaded with the [Ca2+]i indicator, Fura-2. To reveal Ca2+ efflux through PM the interference of intracellular Ca stores was prevented by preincubating the cells in the presence of EGTA, thapsigargin, and ionomycin. Addition of econazole prevented varying entry of divalent cations regulated by the filling state of Ca stores. The preincubation seemed to empty and permeabilize virtually all Ca stores, ensuring that the monitored changes of [Ca2+]i were caused exclusively by PM Ca2+ transporters. Following preincubation, the addition of CaCl2 induced, mediated by ionomycin, a transient rise of [Ca2+]i, a spike, eventually decreasing to an intermediary [Ca2+]i level. The ATP-dependent decrease of [Ca2+]i terminating the spike was abolished by the calmodulin antagonist, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7), but not by the protein kinase C inhibitor, staurosporine, nor by Na+-free medium, suggesting that neither activity of protein kinase C nor exchange was necessary for generation of the Ca2+ spike. In conclusion, the PM Ca2+ pump was responsible for the Ca2+ spike by responding to the rapid rise of [Ca2+]i by a delayed activation, possibly involving calmodulin. This characteristic feature of the PM pump may be important for the generation of cellular [Ca2+]i spikes in general.  相似文献   

9.
Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.  相似文献   

10.
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes into target cells. In another function, we recently showed that cationic liposomes bound to the mast cell surface suppress the degranulation induced by the cross‐linking of high‐affinity immunoglobulin E receptor in a time‐ and dose‐dependent manner. This suppression is mediated by the impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via the inhibition of store‐operated Ca2+ entry. Further, we revealed that the mechanism underlying an impaired [Ca2+]i increase is the inhibition of the activation of the phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Yet, how cationic liposomes inhibit the PI3K‐Akt pathway is still unclear. Here, we focused on caveolin‐1, a major component of caveolae, which is reported to be involved in the activation of the PI3K‐Akt pathway in various cell lines. In this study, we showed that caveolin‐1 translocated from the cytoplasm to the plasma membrane after the activation of mast cells and colocalized with the p85 subunit of PI3K, which seemed to be essential for PI3K activity. Meanwhile, cationic liposomes suppressed the translocation of caveolin‐1 to the plasma membrane and the colocalization of caveolin‐1 with PI3K p85 also at the plasma membrane. This finding provides new information for the development of therapies using cationic liposomes against allergies.  相似文献   

11.
12.
《Cytokine》2011,53(3):210-214
To examine the roles of intracellular calcium in RANKL-induced bone marrow macrophages (BMMs) differentiation, the effects of intracellular calcium chelator BAPTA-AM on RANKL-induced BMMs differentiation, and the activation of its relating signal proteins (MAPKs, and the PI3K/Akt) were studied. BMMs were cultured with various concentrations of BAPTA-AM in the presence of M-CSF (25 ng/ml) and RANKL (25 ng/ml) for 7 days, osteoclastogenic ability, cytosolic free Ca2+ concentration, osteoclast survival and the expression of phosphorylated ERK1/2, SAPK/JNK, Akt and p38 MAPK were measured by TRAP staining, spectrofluorometer and Western blotting. BAPTA-AM inhibited osteoclastogenesis and osteoclast survival of BMMs by RANKL induction. In osteoclasts without the pretreatment of BAPTA-AM, the increased response of [Ca2+]i was observed within 15 min and the maximum was about 1.2 times that of control. This response was sustained for 30 min and returned to the control level at 1 h after RANKL-inducing, and the increased response of [Ca2+]i was completely abolished and sustained to at least 8 h by BAPTA-AM. Although immunoblotting data revealed that RANKL could activate the phosphorylation of ERK1/2, SAPK/JNK, Akt and p38 MAPK, the expression of ERK1/2, Akt and p38 MAPK phosphorylation was inhibited by BAPTA-AM dose-dependently. These results revealed that BAPTA-AM inhibit osteoclastogenic ability of BMMs via suppressing the increase of [Ca2+]i which lead to inhibit RANKL-induced the phosphorylation of ERK, Akt and p38 MAPK, but not JNK. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.  相似文献   

13.
14.
The aim of this study was to determine the localization of calmodulin (CaM) in ram sperm and the possible changes during in vitro capacitation (CA) and the ionophore-induced acrosome reaction (AR). Likewise, changes in intracellular calcium levels ([Ca2+]i) were also analysed by using flow cytometry. CA was induced in vitro in a medium containing BSA, CaCl2, NaHCO3, and AR by the addition of the calcium ionophore A23187. The acrosomal status was assessed by the chlortetracycline-fluorescence (CTC) assay. Flow cytometry (FC) analyses were performed by loading samples with Fluo-3 AM, that emits fluorescence at a high [Ca2+]i, combined with propidium iodide (PI) that allowed us to discriminate sperm with/without an integral plasma membrane both with high/low [Ca2+]i. Immunocytochemistry localized CaM to the flagellum, and some sperm also contained CaM in the head (equatorial and post-acrosomal regions). CA and AR resulted in a slight increase in the post-acrosomal labelling. The treatment of sperm with increasing concentrations of two CaM antagonists, W7 and calmidazolium (CZ), accounted for an increase in capacitated and acrosome-reacted CTC-sperm patterns. CZ induced a significant reduction in the content of three protein tyrosine-phosphorylated bands of approximately of 30, 40 and 45 kDa. However, W7 showed no significant effect at any of the studied concentrations. Neither of them significantly influenced protein serine and threonine phosphorylation. FC analysis revealed that the main subpopulation in the control samples contained 70% of the total sperm with integral plasma membrane and a medium [Ca2+]i. After CA, 67.1% of the sperm preserved an integral membrane with a higher [Ca2+]i. After AR, only 7.2% of the total sperm preserved intact membranes with a very high [Ca2+]i. These results imply that CaM appears to be involved in ram sperm capacitation, and both treatments increased its localization in the post-acrosomal region.  相似文献   

15.
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca2+-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca2+ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca2+-containing but not in a Ca2+-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y2 receptors and PI3K/Akt pathway activation involving Ca2+, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca2+ influx/CaM pathway.  相似文献   

16.
The involvement of the early signaling messengers, inositol tris-phosphate (IP3), intracellular calcium, [Ca2+]i, and protein kinase C (PKC), in angiotensin II (AII)-induced fluid phase endocytosis was investigated in human brain capillary and microvascular endothelial cells (HCEC). AII (0.01–10 μM) stimulated the uptake of Lucifer yellow CH, an inert dye used as a marker for fluid phase endocytosis, in HCEC by 50–230%. AII also triggered a fast accumulation of IP3 and a rapid increase in [Ca2+]i in cells loaded with the Ca2+-responsive fluorescent dye fura-2. The prompt AII-induced [Ca2+]i spike was not affected by incubating HCEC in Ca2+-free medium containing 2 mM EGTA or by pretreating the cultures with the Ca2+ channel blockers, methoxyverapamil (D600; 50 μM), nickel (1 mM), or lanthanum (1 mM), suggesting that the activation of AII receptors on HCEC triggers the release of Ca2+ from intracellular stores. The AII-triggered increases in IP3, [Ca2+]i, and Lucifer yellow uptake were inhibited by the nonselective AII receptor antagonist, Sar1, Val5, Ala8-AII (SVA-AII), and by the phospholipase C (PLC) inhibitors, neomycin and U-73122. By contrast, the protein kinase C (PKC) inhibitors, staurosporine and calphostin C, failed to affect any of these AII-induced events. This study demonstrates that increased fluid phase endocytotosis induced by AII in human brain capillary endothelium, an event thought to be linked to the observed increases in blood-brain barrier permeability in acute hypertension, is likely dependent on PLC-mediated changes in [Ca2+]i and independent of PKC. © 1996 Wiley-Liss, Inc.  相似文献   

17.
In this work we investigated the effect of concentrated metabolic products of lactobacilli (PP) on the dynamics of intracellular calcium concentration ([Ca2+]i) in rat brain neurons. [Ca2+]i was recorded using a fluorescent probe Fura-2 and a ratiometric Ca2+ imaging. It was found that PP increased [Ca2+]i, stimulating the intracellular signaling mechanisms. In these processes the activation of ryanodine receptors and protein kinase C are involved at least partially. Continuous application of PP stimulated a sustained release of Ca2+ from the endoplasmic reticulum and subsequent entry of Ca2+ into the cell. Given that PP is able to stimulate circulation and neurogenesis and is involved in calcium homeostasis in nerve cells in the brain, PP can be regarded as a product for the improvement of psychological parameters and cognitive functions of the brain.  相似文献   

18.
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death.  相似文献   

19.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

20.

Introduction

Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).

Methods

Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.

Results

Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.

Conclusions

Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号