首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury.  相似文献   

2.
The response of aldose reductase (AR) to crush injury was studied in normal rat sciatic nerve. Enzyme activity and immunoreactivity of AR were determined at intervals of 1, 5, 14, 28, and 35 days after crush and correlated with histologic and immunocytochemical observations. During nerve degeneration in the distal segments of crushed nerves, a significant reduction in AR activity was detected. At 5 and 14 days, coincident with Schwann cell proliferation, enzyme activity decreased by nearly two- and fourfold, respectively. Although activity of AR increased by 28 days during nerve regeneration, it was not restored to normal levels at 35 days. Similar reductions were observed with the immunoblotting of the enzyme. Quantitative analysis of immunogold labelling on electron micrographs confirmed that proliferating as well as remyelinating Schwann cells contained reduced gold particle density compared to Schwann cells of noncrushed myelinated fibers. Immunoblots of P0, a marker for the degree of Schwann cell differentiation or myelination, showed that the temporal sequence of changes in P0 paralleled that of AR. Thus expression of AR is a function of differentiated or mature Schwann cells. The putative volume regulatory role of AR in Schwann cells may become superfluous during Wallerian degeneration.  相似文献   

3.
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.  相似文献   

4.
5.
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

6.
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

7.
Ataxin-10 is a cytoplasmic protein that belongs to the family of armadillo repeat proteins and the ataxin proteins are ubiquitously expressed in nervous tissue. A loss of Ataxin-10 in primary neuronal cells causes increased apoptosis of cerebellar neurons. Knockdown of ATXN10 with siRNA in HeLa cells results in cytokinesis defects-multinucleation. Because of the essential role of Ataxin-10 in nervous system and cellular cytokinesis, we investigated the spatiotemporal expression of Ataxin-10 in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Ataxin-10 had a significant up-regulation from 3d, peaked at day 5 and then gradually decreased to the normal level at 4 weeks. At its peak expression, Ataxin-10 expressed mainly in Schwann cells and macrophages of the distal sciatic nerve segment from injury, but had few co-localizations in axons. Besides, the peak expression of Ataxin-10 was in parallel with proliferating cell nuclear antigen (PCNA), and Ataxin-10 co-labeled with PCNA. Thus, all of our findings suggested that Ataxin-10 may be involved in the pathophysiology of sciatic nerve after SNC.  相似文献   

8.
BackgroundElectrical stimulation (ES) has been shown to promote nerve regeneration in rats with experimental diabetes induced using streptozotocin (STZ). However, the time-course effect of ES on nerve regeneration of diabetic animals has not been reported in previous studies. The present study attempted to examine the effect of different timing of ES after peripheral nerve transection in diabetic rats.Methodology/FindingsFifty Sprague-Dawley rats were used in the study. They were classified into five groups. STZ-induced diabetes was created in groups A to D. Normal animals in group E were used as the non-diabetic controls. The sciatic nerve was transected and repaired using a silicone rubber conduit across a 10-mm gap in all groups. Groups A to C received ES for 15 minutes every other day for 2 weeks. Stimulation was initiated on day 1 following the nerve repair for group A, day 8 for group B, and day 15 for group C. The diabetic control group D and the normal control group E received no ES. At 30 days after surgery in group A, histological evaluations showed a higher success percentage of regeneration across the 10-mm nerve gap, and the electrophysiological results showed significantly larger mean values of evoked muscle action potential area and amplitude of the reinnervated gastrocnemius muscle compared with group D.Conclusions/SignificanceIt is concluded that an immediate onset of ES may improve the functional recovery of large nerve defect in diabetic animals.  相似文献   

9.
目的:研究大鼠坐骨神经压榨模型的钙结合蛋白Calretinin(CR)在脊髓的时空变化规律,为探讨其在神经再生中的作用提供实验依据。方法:36只SD大鼠随机分为假手术对照组和坐骨神经压榨组,实验组压榨后分别存活1d到21d,免疫组化结合图像分析技术观察CR在脊髓分布和含量的变化。结果:在对照组,CR样阳性神经元主要分布于腰髓背角Ⅰ,Ⅱ层,Ⅲ~Ⅵ层只观察到一些散在分布的CR样阳性神经元,脊髓前角Ⅷ层和Ⅸ层内也可见一些多极的中间型阳性神经元。坐骨神经压榨1d后,分布于腰髓背角Ⅱ层内的CR样阳性神经元比对照组有轻微增加。3d后,CR样阳性神经元与对照组相比没有明显改变。7d后,CR样阳性神经元有轻微的减少;14d后,CR的表达显著下降;至21d,CR的表达有所恢复,但仍低于7d组。脊髓后角CR免疫阳性产物灰度值测定结果显示:术后14d后角CR表达最低,与对侧和对照组相比有统计学意义(P<0.05)。结论:坐骨神经压榨后CR表达变化呈现一定的时空模式,为进一步揭示CR在神经系统疾病中的作用提供实验依据。  相似文献   

10.
阳历  郭桂平 《生物磁学》2011,(15):2955-2957
目的:研究大鼠坐骨神经压榨模型的钙结合蛋白Calretinin(CR)在脊髓的时空变化规律,为探讨其在神经再生中的作用提供实验依据。方法:36只SD大鼠随机分为假手术对照组和坐骨神经压榨组,实验组压榨后分别存活1d到21d,免疫组化结合图像分析技术观察CR在脊髓分布和含量的变化。结果:在对照组,CR样阳性神经元主要分布于腰髓背角Ⅰ,Ⅱ层,Ⅲ~Ⅵ层只观察到一些散在分布的CR样阳性神经元,脊髓前角Ⅷ层和Ⅸ层内也可见一些多极的中间型阳性神经元。坐骨神经压榨1d后,分布于腰髓背角H层内的CR样阳性神经元比对照组有轻微增加。3d后,CR样阳性神经元与对照组相比没有明显改变。7d后,CR样阳性神经元有轻微的减少;14d后,CR的表达显著下降;至21d,CR的表达有所恢复,但仍低于7d纽。脊髓后角CR免疫阳性产物灰度值测定结果显示:术后14d后角CR表达最低,与对侧和对照组相比有统计学意义(P〈0.05)。结论:坐骨神经压榨后CR表达变化呈现一定的时空模式,为进一步揭示CR在神经系统疾病中的作用提供实验依据。  相似文献   

11.
12.
Neuroactive steroids such as progesterone, testosterone, and their derivatives have been widely studied for their neuroprotective roles in the nervous system. Autologous nerve transplantation is considered as the gold standard repair technique when primary suture is impossible; nevertheless, this method is far from ideal. In this study, we aimed to explore the impact of dihydrotestosterone (DHT), a 5α-reduced derivative of testosterone, on the recovery of peripheral nerve injury treated with autologous nerve transplantation. Sprague–Dawley rats were subjected to a 10-mm right side sciatic nerve reversed autologous nerve transplantation and randomly divided into groups that received DHT or DHT?+?flutamide (an androgen receptor blocker) daily for 8 weeks after operation. Our results demonstrated that DHT could speed up the rate of axonal regeneration and increase the expression of myelin protein zero (P0) in autograft reversal sciatic nerves. Thus, our study provided new insights into improving the prognosis of patients with long gap peripheral nerve defects.  相似文献   

13.
14.
Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes.  相似文献   

15.
SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish. Due to the potential of SYF2 in modulating microtubule dynamics in nervous system, we investigated the spatiotemporal expression of SYF2 in a rat sciatic nerve crush (SNC) model. We found that SNC resulted in a significant upregulation of SYF2 from 3 days to 1 week and subsequently returned to the normal level at 4 weeks. At its peak expression, SYF2 distributed predominantly in Schwann cells. In addition, upregulation of SYF2 was approximately in parallel with Oct-6, and numerous Schwann cells expressing SYF2 were Oct-6 positive. In vitro, we observed enhanced expression of SYF2 during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation. SYF2-specific siRNA-transfected Schwann cells did not show significant morphological change in the process of Schwann cell differentiation. Also, we found shorter and disorganized microtubule structure and a decreased migration in SYF2-specific siRNA-transfected Schwann cells. Together, these findings indicated that the upregulation of SYF2 was associated with Schwann cell differentiation and migration following sciatic nerve crush.  相似文献   

16.
17.
Granulocyte-colony stimulating factor (G-CSF) is widely known to have a neuroprotective effect, but its effects on function and morphology in mechanical nerve injury are not well understood. The aim of this study was to confirm the time course of the functional changes and morphological effects of G-CSF in a rat model of nerve crush injury. Twelve-eight rats were divided into three group: sham-operated control group, G-CSF-treated group, and saline treated group. 2 weeks after the nerve crush injury, G-CSF was injected for 5 days. After 4 weeks, functional tests such as motor nerve conduction velocity (MNCV), mechanical and cold allodynia tests, and morphological studies were performed. G-CSF-treated rats had significantly improved nerve function including MNCV and mechanical and cold allodynia. In addition, G-CSF-treated rats had significantly higher the density of myelinated fibers than saline-treated rats. In conclusion, we found that 100 μg/kg administration of G-CSF promoted long-term functional recovery in a rat model of nerve crush injury.  相似文献   

18.
Histone deacetylase 4 (HDAC4), a member of the class IIa HDACs subfamily, has emerged as a critical regulator of cell growth, differentiation, and migration in various cell types. It was reported that HDAC4 stimulated colon cell proliferation via repression of p21. Also, HDAC4 contributes to platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells. Furthermore, HDAC4 may play an important role in the regulation of neuronal differentiation and survival. However, the role of HDAC4 in the process of peripheral nervous system regeneration after injury remains virtually unknown. Herein, we investigated the spatiotemporal expression of HDAC4 in a rat sciatic nerve crush model. We found that sciatic nerve crush induced up-regulated expression of HDAC4 in Schwann cells. Moreover, the expression of the proliferation marker Ki-67 exhibited a similar tendency with that of HDAC4. In cell cultures, we observed increased expression of HDAC4 during the process of TNF-α-induced Schwann cell proliferation, whereas the protein level of p21 was down-regulated. Interference of HDAC4 led to enhanced expression of p21 and impaired proliferation of Schwan cells. Taken together, our findings implicated that HDAC4 was up-regulated in the sciatic nerve after crush, which was associated with proliferation of Schwann cells.  相似文献   

19.
Cell division cycle protein 37 (Cdc37), a molecular chaperone takes part in a series of cellular processes including cell signal transduction, cell cycle progression, cell proliferation, cell motility, oncogenesis and malignant progression. It can not only recruit immature protein kinases to HSP90 but also work alone. Cdc37 was reported to be associated with neurogenesis, neurite outgrowth, axon guidance and myelination. However, the roles of Cdc37 on Schwann cells (SC) after peripheral nerve injury (PNI) remain unknown. In this study, we found that the expression of Cdc37 increased and reached the peak at 1 week after sciatic nerve crush (SNC), which was consistent with that of proliferation cell nuclear antigen. Immunofluorescence verified that Cdc37 co-localized with SC in vivo and in vitro. Intriguingly, Cdc37 protein level was potentiated in the model of TNF-α-induced SC proliferation. Moreover, we found that Cdc37 silencing impaired proliferation of SC in vitro. Moreover, Cdc37 suppression attenuated kinase signaling pathways of Raf–ERK and PI3K/AKT which are crucial cell signaling for SC proliferation. Finally, we found that Cdc37 silencing inhibited SC migration in vitro. In conclusion, we demonstrated that the way Cdc37 contributed to SC proliferation is likely via activating kinase signaling pathways of Raf–ERK and PI3K/AKT, and CDC37 was also involved in SC migration after SNC.  相似文献   

20.
目的:探讨新型材料poly(ethylene argininylaspartate diglyceride)(PEAD)结合肝素包裹神经生长因子组成的三元复合体比单纯运用NGF治疗大鼠坐骨神经损伤效果明显,为临床治疗外周神经损伤提供实验依据。方法:24只200g左右Wistar大鼠,分成生理盐水组,NGF组,NGF凝聚体三组,每组各8只,距梨状肌下缘远侧约1.5cm处运用静脉夹夹紧坐骨神经2min,采用无创细线(5/0)缝合肌肉和皮肤,并用碘伏进行消毒,NGF组每天沿坐骨切迹肌注80ngNGF,持续30天;NGF凝聚体组仅在造模时肌注复合体(内含2.4μg的NGF);生理盐水组给予等体积的生理盐水。术后每周运用脚步印迹法评价动物的行为学,并于30天后灌流、收集各组损伤侧坐骨神经,运用HE染色及投射电镜观察坐骨神经结构恢复情况,免疫荧光标记MBP,观察其蛋白的表达。结果:NGF组,NGF凝聚体组在行为学、病理结构及蛋白的表达远高于生理盐水组,并且NGF凝聚组的治疗效果优于NGF组。结论:新型凝聚体包载NGF具有明显的促进周围神经损伤后的修复与再生作用,能够在一定程度上提高单纯运用NGF治疗大鼠坐骨神经损伤的不足,达到更加理想和显著的促恢复效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号