首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The clonal nature of CFUf-derived fibroblast colonies was tested in mixed cultures of CBA and CBAT6T6 bone marrow cells. Inoculation of marrow cell suspensions into flasks coated with poly-I-lysin has proved that no stromal aggregates were present among cells subjected to explantation. Marrow cell cultures depleted of macrophages and myeloid cells were used for chromosome analysis. The coincidence of karyotypes within a stromal colony was found in mixed cultures, which proves that CFUf-derived fibroblast colonies are cell clones.  相似文献   

2.
The number of fibroblast colonies in bone marrow cultures depends on FCFC concentration in explanted cells and FCFC cloning efficiency. For mouse bone marrow the efficiency of fibroblast colony formation increases in the presence of the feeder (irradiated bone marrow of spleen cells). Colony-stimulating feeder activity does not depend on the presence of phagocytic and stromal cells in the feeder cell population. Trypsinization of the bone marrow leads to the release of additional FCFC and the increase of their concentration in bone marrow cell suspensions.  相似文献   

3.
Occurrence of young-type stromal stem cells (defined here as "pre-CFU-f") in murine bone marrow is reported in this study. Two consecutive intraperitoneal (i.p.) cytosine arabinoside (ara-C) injections were administered to C57B1 mice (2 X 200 mg/kg at 6-h intervals). Two days later the bone marrow was collected and assayed for colony-forming units-fibroblastoid (defined here as "CFU-f"). In additional experiments, ara-C-treated marrow was exposed in vitro to hydroxyurea (HU; "hydroxyurea killing test"), prior to plating, to establish the cycling state of stromal stem cells. In separate cultures of ara-C-treated marrow, replating of adherent cells was carried out up to quaternary sub-cultures. The results indicate ara-C-treated marrow produces approximately 20% "huge" fibroblastoid colonies (approximately 5 mm diameter versus 0.5-2 mm normal size); most stromal stem cells producing huge colonies are cycling cells; and adherent cells from primary ara-C-treated marrow cultures replated to secondary cultures produce adherent layers with double the number of cells than in the control secondary cultures. We conclude that the ara-C-treated murine bone marrow contains certain young-type cycling stromal stem cells which we refer to as pre-CFU-f. These stem cells produce huge fibroblastoid colonies in culture, indicating that they probably go through more cell cycles than CFU-f during the culture period. Alternatively, pre-CFU-f may have a higher self-replicative capacity than CFU-f.  相似文献   

4.
Liashev IuD  Burda IuE 《Tsitologiia》2002,44(12):1178-1180
The influence of opioid peptides DSLET and DAGO in doses 10(-5), 10(-7) or 10(-10) mg per 1 ml of the medium on colony formation in the culture of stromal bone marrow fibroblast precursors was investigated 5. 10(-6) bone marrow cells were placed in plastic containers (Costar). 12 day old cell cultures were fixed with ethanol and stained with hematoxyline-eosin. Effectiveness of fibroblast colony formation (EFFC) was detected. Grown fibroblast colonies were stained after Gomory for alkaline phosphatase. Opioid peptides DSLET and DAGO in the used doses exerted no influence on EFFC and percentage phosphatase-positive colonies, which casts doubt on a presumable direct action of opioid peptides on stromal bone marrow cell-precursors. But it does not seem unlikely that opioid peptides may affect stromal bone marrow precursors of fibroblasts through the cell environment, particularly, via macrophages.  相似文献   

5.
G Prindull  Z Ben-Ishay  B Prindull 《Blut》1987,55(6):489-497
Stromal precursor cells from bone marrow aspirates of children have been studied in culture. In 7 day liquid cultures normal individuals and patients with acute leukemia in remission grew 110 +/- 50 CFU-F and 100 +/- 40 CFU-F (colony forming unit--fibroblasts) respectively, per 6 X 10(5) buffy coat mononuclear cells. Staining with monoclonal antibodies suggests that stromal cells from CFU-F colonies are fibroblasts. CFU-F colony growth from the bone marrow of patients with active leukemia was low. After cultivation periods of more than 21 days, we observed, in addition, still more immature, clonogenic fibroblast precursor cells, "pre CFU-F", and round cells attached to stromal cells from pre CFU-F colonies. From the round cells, we have passaged pre CFU-F and CFU-GM (colony forming unit--granulocytic, monocytic) in secondary cultures. Our observations are in agreement with the concept that the bone marrow stromal cell matrix serves as a sanctuary for reversibly attached clonogenic cells of both the hematopoietic and fibroblast lineages.  相似文献   

6.
Disaggregated cell suspensions obtained by mouse bone marrow fermentative digestion as well as stromal tissue obtained by marrow mild mechanical destruction were explanted. Both methods yield the cultures in which the hematopoiesis duration is comparable with dexter cultures. Adhesive cells from all of these three culture types were resuspended and in the porous gelatin sponges heterotopically transplanted under the kidney capsule of syngenic recipients. In the transplantation site there develops the hemopoietic organ containing reticular stroma, hemopoietic cells, and in most cases the well developed bone tissue. Thus, the adherent layers of mouse bone marrow dexter and similar cultures contain for a long period (not less than 2-3.5 months) the stromal fibroblast population which maintains its osteogenic and hemopoietic microenvironment transfer capacities.  相似文献   

7.
Blast colony-forming cells (CFU-BL) represent a specific subpopulation of special primitive progenitors characterized by colony formation only in close contact with a preformed stromal layer. CFU-BL derived from bone marrow of chronic myeloid leukaemia (CML) patients have been proved to adhere poorly to bone marrow derived stromal layers suggesting that the appearance of progenitors and precursors in the circulation is due to a defective adhesion of these cells to the bone marrow microenvironment. In the present experiments the effect of short-term incubation of preformed normal bone marrow stroma on the adherence of CML derived CFU-BL was studied. For stroma cultures bone marrow cells were cultured in microplates in the presence of hydrocortisone. Cultures were used when stromal layers became confluent and no sign of haemopoiesis could be observed. CFU-BL were studied by panning plastic non-adherent mononuclear (PNAMNC) bone marrow or blood cells. 8.9 +/- 2.4 colonies/103 PNAMNC (six experiments) were formed from normal bone marrow on stromal layers and 4.8 +/- 2.1 colonies/103 PNAMNC (five experiments) from CML bone marrow. Colony formation from normal bone marrow was not increased if stromal layers were incubated with 100 ng/mL granulocyte colony-stimulating factor (G-CSF) or stem cell factor (SCF). Incubation of stroma with G-CSF or SCF, however, increased the colony formation of PNAMNC from CML bone marrow or blood significantly. These findings suggest that local concentration of haemopoietic growth factors at the time of panning may influence the attachment of CML progenitors to the stroma.  相似文献   

8.
Bone marrow stromal cell lines have been isolated that directly support B lymphopoiesis in vitro. Single B-lineage precursors proliferate and differentiate on certain of these stromal cell lines to establish long-term B-lineage cultures. These lymphopoietic stromal cells produce novel soluble factors that support proliferation of in vitro established pre-B cell populations. Lymphoid populations established on lymphopoietic stromal cell lines lack surface Ig-bearing cells, but give rise to surface Ig+ cells when transferred to mixed bone marrow feeder layers. Several stromal lines expressed a B-lineage neoplasia marker detected by the monoclonal antibody MAb6C3. Remarkably, only the 6C3Aghi stromal lines supported long-term proliferation of B-lineage cells. We propose that the 6C3 antigen-bearing molecule may play a role in stromal cell-dependent, pre-B cell proliferation, as well as in neoplastic proliferation of pre-B leukemias.  相似文献   

9.
The colonies of human bone marrow fibroblasts in monolayer culture have been studied. It has been shown that there are two types of colonies in the cultures: monolayer and multilayer ones, both having alkaline phosphatase-positive cells. In monolayer colonies one can observe calcium deposition indicative of osteogenic differentiation of human bone marrow stromal cells.  相似文献   

10.
11.
Abstract. Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20–30 cell doublings in vitro , the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

12.
Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20-30 cell doublings in vitro, the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

13.
14.
To investigate the effect of Trp53 (formerly known as p53) on stromal cells of the hematopoietic microenvironment, long-term bone marrow cultures were established from mice in which the Trp53 gene had been inactivated by homologous recombination (Trp53(-/-)) or their wild-type littermates (Trp53(+/+)). Long-term bone marrow cultures from Trp53(-/-) mice continued to produce nonadherent cells for 22 weeks, while Trp53(+/+) cultures ceased production after 15 weeks. There was a significant increase in the number of nonadherent cells produced in Trp53(-/-) long-term bone marrow cultures beginning at week 9 and continuing to week 22 (P < 0.02). The Trp53(-/-) cultures also showed significantly increased cobblestone island formation indicative of early hematopoietic stem cell-containing colonies beginning at week 10 (P < 0.01). Cobblestone islands persisted until weeks 15 and 22 in Trp53(+/+) and Trp53(-/-) cultures, respectively. Co-cultivation experiments in which Trp53(+/+) Sca1(+)lin- enriched hematopoietic stem cells were plated on Trp53(-/-) stromal cells showed increased cobblestone island formation compared to Trp53(-/-) Scal+lin- cells plated on Trp53(+/+) or Trp53(-/-) stromal cells. Radiation survival curves for clonal bone marrow stromal cells revealed a similar D0 for the Trp53(+/+) and Trp53(-/-) cell lines (1.62 +/- 0.16 and 1.49 +/- 0. 08 Gy, respectively; P = 0.408), and similar n (8.60 +/- 3.23 and 10.71 +/- 0.78, respectively) (P = 0.491). Cell cycle analysis demonstrated a G2/M-phase arrest that occurred 6 h after irradiation for both Trp53(+/+) and Trp53(-/-) stromal cell lines. After 10 Gy irradiation, there was no significant increase in the frequency of apoptosis detected in Trp53(+/+) compared to Trp53(-/-) marrow stromal cell lines. In the stromal cell lines, ICAM-1 was constitutively expressed on Trp53(+/+) but not Trp53(-/-) cells; however, a 24-h exposure to TNF-alpha induced detectable ICAM-1 on Trp53(-/-) cells and increased expression on Trp53(+/+) cells. To test the effect of Trp53 on the radiation biology of hematopoietic progenitor cells, the 32D cl 3 cell line was compared with a subclone in which expression of an E6 inserted transgene accelerates ubiquitin-dependent degradation of Trp53, thus preventing accumulation of Trp53 after genotoxic stress. The radiation survival curves were similar with no significant difference in the D0 or n, or in the percentage of cells undergoing apoptosis after 10 Gy irradiation between the two cell lines. Cells of the 32D-E6 cell line displayed a G2/M-phase arrest 6 h after 10 Gy, while cells of the parent line exhibited both a G2/M-phase arrest and a G1-phase arrest at 24 and 48 h. The results suggest a complex mechanism of action of Trp53 on the interactions between stromal and hematopoietic cells in long-term bone marrow cultures.  相似文献   

15.
The clonal nature of CFUf-derived fibroblast colonies was proved by chromosomal analysis of individual colonies and single-colony-derived fibroblast strains using mixed cell cultures from male and female rabbits. CFUf progeny, forming colonies composed of more than 10(3) cells was capable of 20-30 cell doublings during subsequent passages. When transplanted in diffusion chambers, single-colony-derived fibroblast strains formed bone and cartilage simultaneously. Thus, CFUf or part of them can be regarded as bone marrow osteogenic stem cells.  相似文献   

16.
Bone marrow cells from a patient with pancytopenia and a lymphoproliferative disorder of large granular lymphocytes (LGL) were cultured and tested for their hemopoietic colony-forming potential. Neither erythroid nor granulocyte-macrophage colony formation could be obtained from unfractionated, or LGL-depleted bone marrow cell preparations. However, a spontaneous growth of lymphoid colonies was observed after culturing LGL-depleted (T3-) bone marrow cell suspensions for 25 days. Pooled colonies expanded with recombinant interleukin-2 yielded a population composed predominantly of mature T cells (T3+, Leu 6-). These findings suggest that some (T3-) T cell precursors may mature in the bone marrow and that, in our patient, LGL may have exerted a suppressor effect on this maturational process.  相似文献   

17.
Study of the radiation biology of human bone marrow hematopoietic cells has been difficult since unseparated bone marrow cell preparations also contain other nonhematopoietic stromal cells. We tested the clonogenic survival after 0.05 or 2 Gy/min X irradiation using as target cells either fresh human bone marrow or nonadherent hematopoietic cells separated from stromal cells by the method of long-term bone marrow culture (LTBMC). Sequential nonadherent cell populations removed from LTBMC were enriched for hematopoietic progenitors forming granulocyte-macrophage colony-forming unit culture (GM-CFUc) that form colonies at Day 7, termed GM-CFUc7, or Day 14 termed GM-CFUc14. The results demonstrated no effect of dose rate on the D0 or n of fresh marrow GM-CFUc (colonies greater than or equal to 50 cells) after plating in a source of their obligatory growth factor, colony-stimulating factor (CSF) (GM-CFUc7 irradiated at 2 Gy/min, D0 = 1.02 +/- 0.05, n = 1.59 +/- 0.21; at 0.05 Gy/min, D0 = 1.07 +/- 0.03, n = 1.50 +/- 0.04; GM-CFUc14 at 2 Gy/min, D0 = 1.13 +/- 0.03, n = 1.43 +/- 0.03; at 0.05 Gy/min, D0 = 1.16 +/- 0.04, n = 1.34 +/- 0.05). There was a decrease in the radiosensitivity of GM-CFUc7 and GM-CFUc14 derived from nonadherent cells of long-term bone marrow cultures compared to fresh marrow that was observed at both dose rates. In contrast, adherent stromal cells irradiated at low compared to high dose rate showed a significantly greater radioresistance (Day 19 colonies of greater than or equal to 50 cells; at 2 Gy/min, D0 = 0.99 Gy, n = 1.03; at 0.05 Gy/min D0 = 1.46 Gy, n = 2.00). These data provide strong evidence for a difference in the radiosensitivity of human marrow hematopoietic progenitor compared to adherent stromal cells.  相似文献   

18.
在无外源刺激条件征,我室所建小鼠胎肝基质细胞系MFLC可自发分泌多处类型细胞因子,其中IL-6及化学趋化因了水平较高,GM-CSF较低,但示检测到IL-3及IL-7活性,引细胞上清对小鼠骨髓造血干细胞有明显的促集落形成效应。并呈现剂量依赖关系,所形成的集落以CFU-GMM及CFU-GM为主,此细胞上清还促进5-Fu耐受小鼠骨髓造血干细胞的集落形成,提示上清中存在SCF样活性成份。上述结果表明,MF  相似文献   

19.
The maintenance of hemopoietic precursors in long-term liquid bone marrow cultures (LTBMC) is associated with the presence of an adherent stromal layer composed of heterogeneous cell populations. We have used a culture assay to promote the growth of one of its cellular components and characterize its properties. Freshly obtained bone marrow cells and cells derived from the adherent layer of LTBMC were grown in methylcellulose-clotted plasma in the presence of phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM), hydrocortisone (HC), and citrated normal human plasma. Both sources contained cells (CFU-RF) that gave rise to colonies of cells with a reticulofibroblastoid appearance. In the presence of HC, most colonies contained lipid-laden cells. Colonies could be further propagated as adherent layers when transferred into liquid cultures. These cells produced laminin, fibronectin, and collagen types I, III, IV, and V. They were negative for Von Willebrand factor VIII. The ability to synthesize laminin and collagen type IV distinguished these cells from a population of previously described bone marrow fibroblasts (CFU-F). The relationship of CFU-RF to hemopoietic precursors was investigated using patients with chronic myeloid leukemia and bone marrow transplant recipients. Cells within CFU-RF-derived colonies were uniformly negative for the Philadelphia chromosome, thus making it unlikely that they belonged to the malignant hemopoietic clone. CFU-RF-derived colonies in bone marrow transplant recipients were found to be exclusively of host origin. Both observations support the view that CFU-RF is not part of the repertoire of hemopoietic stem cells.  相似文献   

20.
A diploid fibroblastoid cell strain, termed "ST-1," has been established from a long-term liquid culture of human fetal liver cells. ST-1 cells are nonphagocytic, nonspecific esterase negative and do not possess factor VIII-related antigen but stain with antibodies specific for fibronectin and type I collagen. The ST-1 cells produce nondialyzable hemopoietic growth factors capable of stimulating the development of erythroid bursts, mixed granulocyte-macrophage colonies, pure granulocyte colonies, and pure macrophage colonies. These factors are active on both human fetal liver and human adult bone marrow progenitors. When liquid cultures of human fetal liver hemopoietic progenitors are established with a preformed monolayer of ST-1 cells, the yields of nonadherent cells, erythroid progenitors, and myeloid progenitors are greatly increased. These studies demonstrate that the fibroblastoid ST-1 cells support hemopoiesis in vitro and may be a critical element in the stromal microenviroment in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号