首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare the oxidation of 13C-labeled glucose, fructose, and glucose polymer ingested (1.33 g.kg-1 in 19 ml.kg-1 water) during cycle exercise (120 min, 53 +/- 2% maximal O2 uptake) in six healthy male subjects. Oxidation of exogenous glucose and glucose polymer (72 +/- 15 and 65 +/- 18%, respectively, of the 98.9 +/- 4.7 g ingested) was similar and significantly greater than exogenous fructose oxidation (54 +/- 13%). A transient rise in plasma glucose concentration was observed with glucose ingestion only. However, plasma insulin levels were similar with glucose and glucose polymer ingestions and significantly higher than with water or fructose ingestion. Plasma free fatty acid and glycerol responses to exercise were blunted with carbohydrate ingestion. However, fat utilization was not significantly different with water (82 +/- 14 g), glucose (60 +/- 3 g), fructose (59 +/- 11 g), or glucose polymer ingestion (60 +/- 8 g). Endogenous carbohydrate utilization was significantly lower with glucose (184 +/- 22 g), glucose polymer (187 +/- 31 g), and fructose (211 +/- 18 g) than with water (239 +/- 30 g) ingestion. Plasma volume slightly increased with water ingestion (7.4 +/- 4.5%), but the decrease was similar with glucose (-7.6 +/- 5.1%) and glucose polymer (-8.2 +/- 4.6%), suggesting that the rate of water delivery to plasma was similar with the two carbohydrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We measured substrate utilization during exercise performed with water (W), exogenous glucose (G), and exogenous fructose plus glucose (FG) ingestion in boys age 10-14 yr. Subjects (n = 12) cycled for 90 min at 55% maximal O(2) uptake while ingesting either W (25 ml/kg), 6% G (1.5 g/kg), or 3% F plus 3% G (1.5 g/kg). Fat oxidation increased during exercise in all trials but was higher in the W (0.28 +/- 0.023 g/min) than in the G (0.24 +/- 0.023 g/min) and FG (0.25 +/- 0.029 g/min) trials (P = 0.04). Conversely, total carbohydrate (CHO) oxidation decreased in all trials and was lower in the W (0.63 +/- 0.05 g/min) than in the G (0.78 +/- 0.051 g/min) and FG (0.74 +/- 0.056 g/min) trials (P = 0.009). Exogenous CHO oxidation, as determined by expired (13)CO(2), reached a maximum of 0.36 +/- 0.032 and 0.31 +/- 0.030 g/min at 90 min in G and FG, respectively (P = 0.04). Plasma insulin levels decrease during exercise in all trials but were twofold higher in G than in W and FG (P < 0.001). Plasma glucose levels decreased transiently after the onset of exercise in all trials and then returned to preexercise values in the W and FG (approximately 4.5 mmol/l) trials but were elevated by approximately 1.0 mmol/l in the G trial (P < 0.001). Plasma lactate concentrations decreased after the onset of exercise in all trials but were lower by approximately 0.5 mmol/l in W than in G and FG (P = 0.02). Thus, in boys exercising at a moderate intensity, the oxidation rate of G plus F is slightly less than G alone, but both spare endogenous CHO and fat to a similar extent. In addition, compared with flavored W, the ingestion of G alone and of G plus F delays exhaustion at 90% peak power by approximately 25 and 40%, respectively, after 90 min of moderate-intensity exercise.  相似文献   

3.
The respective oxidation of glycerol and glucose (0.36 g/kg each) ingested simultaneously immediately before exercise (120 min at 68 +/- 2% maximal oxygen uptake) was measured in six subjects using (13)C labeling. Indirect respiratory calorimetry corrected for protein and glycerol oxidation was used to evaluate the effect of glucose + glycerol ingestion on the oxidation of glucose and fat. Over the last 80 min of exercise, 10.0 +/- 0.8 g of exogenous glycerol were oxidized (43% of the load), while exogenous glucose oxidation was 21% higher (12.1 +/- 0.7 g or 52% of the load). However, because the energy potential of glycerol is 18% higher than that of glucose (4.57 vs. 3.87 kcal/g), the contribution of both exogenous substrates to the energy yield was similar (4.0-4.1%). Total glucose and fat oxidation were similar in the placebo (144.4 +/- 13.0 and 60.5 +/- 4.2 g, respectively) and the glucose + glycerol (135.2 +/- 12.0 and 59.4 +/- 6.5 g, respectively) trials, whereas endogenous glucose oxidation was significantly lower than in the placebo trial (123.7 +/- 11.7 vs. 144.4 +/- 13.0 g). These results indicate that exogenous glycerol can be oxidized during prolonged exercise, presumably following conversion into glucose in the liver, although direct oxidation in peripheral tissues cannot be ruled out.  相似文献   

4.
Oxidation of combined ingestion of glucose and fructose during exercise.   总被引:1,自引:0,他引:1  
The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O(2) consumption: 62 +/- 3 ml x kg(-1) x min(-1)) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 +/- 2% maximal O(2) consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-(13)C]fructose, and the ingested glucose was labeled with [U-(14)C]glucose. Peak exogenous carbohydrate oxidation rates were approximately 55% higher (P < 0.001) in Fruc+Glu (1.26 +/- 0.07 g/min) compared with Med-Glu and High-Glu (0.80 +/- 0.04 and 0.83 +/- 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher (P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 +/- 0.06, 0.75 +/- 0.04, and 0.75 +/- 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance (P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of approximately 1.3 g/min.  相似文献   

5.
The metabolic responses induced by the ingestion of a beverage containing glucose (G), fructose (F) or placebo (W) 30 min before exercise of high intensity and intermediate duration have been investigated; in these conditions the energy processes are mostly dependent on aerobic reactions. A group of 11 male recreational sportsmen ran on a treadmill, at an intensity corresponding to 82% of peak oxygen consumption, until exhaustion on three different occasions (after ingestion of a beverage containing 75 g of G, 75 g of F or W). Plasma glucose, insulin, and lactic acid concentrations were determined just prior to the ingestion of the beverages, 30 min afterwards and 10 and 30 min after completion of the exercise. The mean endurance time was 644 (SD 261) s after the ingestion of G, 611 (SD 227) s after the ingestion of F and 584 (SD 189) s after the ingestion of the W (P < 0.05 between G and W). No differences in the oxygen uptake, respiratory quotient or lactate concentrations between the three trials were observed. Both plasma glucose and insulin concentrations determined in samples obtained immediately before the onset of exercise were higher when G was ingested than when F (P < 0.05 andP < 0.05, respectively) or W (P < 0.001 and P < 0.005, respectively) were ingested. These findings would suggest that the ingestion of G prior to an effort of intermediate duration may improve physical performance.  相似文献   

6.
It was reported previously that glucose ingestion prior to or at the beginning of muscular exercise was a readily available metabolic substrate. The aim of this study was to see what percentage of carbohydrate utilization can be covered by glucose ingested regularly during exercise. Male healthy volunteers exercised for 285 min at approximately 45% of their individual maximal O2 uptake on a 10% uphill treadmill. After 15 min adaptation to exercise they received either 200 g (group G 200) or 400 g (group G 400) glucose (0.25 g X ml H2O-1) orally in eight equal doses repeated every 30 min (G 200 = 8 X 25 g, n = 4; G 400 = 8 X 50 g, n = 4). Indirect calorimetry was used to evaluate carbohydrate and lipid oxidation. Naturally labeled [13C]glucose was used to follow the oxidation of the exogenous glucose. Total carbohydrate oxidation was 341 +/- 22 and 332 +/- 32 g, lipid oxidation was 119 +/- 8 and 105 +/- 5 g, and exogenous glucose oxidation was 137 +/- 4 and 227 +/- 13 g (P less than 0.005) in groups G 200 and G 400, respectively. Endogenous glucose oxidation was about half in G 400 of what it was in G 200: 106 +/- 27 vs. 204 +/- 24 g (P less than 0.02). During the last hour of exercise, exogenous oxidation represented 55.3 and 87.5% of total carbohydrate oxidation for groups G 200 and G 400, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of the present experiment was to compare 13CO2 recovery at the mouth, and the corresponding exogenous glucose oxidation computed, during a 100-min exercise at 63 +/- 3% maximal O2 uptake with ingestion of glucose (1.75 g/kg) in six active male subjects, by use of [U-13C] and [1,2-13C]glucose. We hypothesized that 13C recovery and exogenous glucose oxidation could be lower with [1,2-13C] than [U-13C]glucose because both tracers provide [13C]acetate, with possible loss of 13C in the tricarboxylic acid (TCA) cycle, but decarboxylation of pyruvate from [U-13C]glucose also provides 13CO2, which is entirely recovered at the mouth during exercise. The recovery of 13C (25.8 +/- 2.3 and 27.4 +/- 1.2% over the exercise period) and the amounts of exogenous glucose oxidized computed were not significantly different with [1,2-13C] and [U-13C]glucose (28.9 +/- 2.6 and 30.7 +/- 1.3 g, between minutes 40 and 100), suggesting that no significant loss of 13C occurred in the TCA cycle. This stems from the fact that, during exercise, the rate of exogenous glucose oxidation is probably much larger than the flux of the metabolic pathways fueled from TCA cycle intermediates. It is thus unlikely that a significant portion of the 13C entering the TCA cycle could be diverted to these pathways. From a methodological standpoint, this result indicates that when a large amount of [13C]glucose is ingested and oxidized during exercise, 13CO2 production at the mouth accurately reflects the rate of glucose entry in the TCA cycle and that no correction factor is needed to compute the oxidative flux of exogenous glucose.  相似文献   

8.
Two studies were undertaken to characterize the effects of carbohydrate ingestion on fuel/hormone response to exercise and muscle glycogen utilization during prolonged competitive exercise. In study 1, eighteen subjects were divided into three groups, matched for maximum oxygen consumption (VO2max) and blood lactate turnpoint. All subjects underwent a 3-day carbohydrate (CHO) depletion phase, followed by 3 days of CHO loading (500-600 g.day-1). During the race, the groups drank either 2% glucose (G), 8% glucose polymer (GP), or 8% fructose (F). Muscle biopsies were performed before and after the race and venous blood was sampled before and at regular intervals during the race. In study 2, eighteen subjects divided into 2 matched groups ingested either a 4% G or 10% GP solution during a 56 km race. Despite significantly greater CHO ingestion by GP and F in study 1 and by GP in study 2, blood glucose, free fatty acids and insulin concentrations, muscle glycogen utilization and running performance were not different between groups. These studies show (i) that hypoglycaemia is uncommon in athletes competing in races of up to 56 km provided they CHO-load before and ingest a minimum of 10 g CHO.h-1 during competition; (ii) that neither the amount (10 g vs 40 g.h-1) nor the type of carbohydrate (G vs GP vs F) has any effect on the extent of muscle glycogen depletion or running performance in matched subjects racing over distances up to 56 km.  相似文献   

9.
The decarboxylation/oxidation and the deamination of 13C- and [15N]alanine ingested (1 g/kg or 73.7 +/- 2 g) during prolonged exercise at low workload (180 min at 53 +/- 2% maximal O2 uptake) was measured in six healthy male subjects from V13CO2 at the mouth and [15N]urea excretion in urine and sweat. Over the exercise period, 50.6 +/- 3.5 g of exogenous alanine were oxidized (68.7 +/- 4.5% of the load), providing 10.0 +/- 0.6% of the energy yield vs. 4.8 +/- 0.4, 47.6 +/- 4.3, and 37.4 +/- 4.7% for endogenous proteins, glucose, and lipids, respectively. Alanine could have been oxidized after conversion into glucose in the liver and/or directly in peripheral tissues. In contrast, only 13.0 +/- 3.2 mmol of [(15)N]urea were excreted in urine and sweat (10.6 +/- 0.4 and 2.4 +/- 0.5 mmol, respectively), corresponding to the deamination of 2.3 +/- 0.3 g of exogenous alanine (3.1 +/- 0.4% of the load). These results confirm that the metabolic fate of the carbon skeleton and the amino-N moiety of exogenous alanine ingested during prolonged exercise at low workload are markedly different. The large positive nitrogen balance (8.5 +/- 0.3 g) suggests that in this situation protein synthesis could be increased when a large amount of a single amino acid is ingested.  相似文献   

10.
Substrate utilization after fructose, glucose, or water ingestion was examined in four male and four female subjects during three treadmill runs at approximately 75% of maximal O2 uptake. Each test was preceded by three days of a carbohydrate-rich diet. The runs were 30 min long and were spaced at least 1 wk apart. Exercise began 45 min after ingestion of 300 ml of randomly assigned 75 g fructose (F), 75 g glucose (G), or control (C). Muscle glycogen depletion determined by pre- and postexercise biopsies (gastrocnemius muscle) was significantly (P less than 0.05) less during the F trial than during C or G. Venous blood samples revealed a significant increase in serum glucose (P less than 0.05) and insulin (P less than 0.01) within 45 min after the G drink, followed by a decrease (P less than 0.05) in serum glucose during the first 15 min of exercise, changes not observed in the C or F trials. Respiratory exchange ratio was higher (P less than 0.05) during the G than C or F trials for the first 5 min of exercise and lower (P less than 0.05) during the C trial compared with G or F for the last 15 min of exercise. These data suggest that fructose ingested before 30 min of submaximal exercise maintains stable blood glucose and insulin concentrations, which may lead to the observed sparing of muscle glycogen.  相似文献   

11.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

12.
Exogenous carbohydrate oxidation was assessed in 6 male Category 1 and 2 cyclists who consumed CytoMax (C) or a leading sports drink (G) before and during continuous exercise (CE). C contained lactate-polymer, fructose, glucose and glucose polymer, while G contained fructose and glucose. Peak power output and VO2 on a cycle ergometer were 408+/-13 W and 67.4+/-3.2 mlO2 x kg(-1) x min(-1). Subjects performed 3 bouts of CE with C, and 2 with G at 62% VO2peak for 90 min, followed by high intensity (HI) exercise (86% VO(2)peak) to volitional fatigue. Subjects consumed 250 ml fluid immediately before (-2 min) and every 15 min of cycling. Drinks at -2 and 45 min contained 100 mg of [U-(13)C]-lactate, -glucose or -fructose. Blood, pulmonary gas samples and 13CO2 excretion were taken prior to fluid ingestion and at 5,10,15,30,45,60,75, and 90 min of CE, at the end of HI, and 15 min of recovery. HI after CE was 25% longer with C than G (6.5+/-0.8 vs. 5.2+/-1.0 min, P<0.05). 13CO2 from the -2 min lactate tracer was significantly elevated above rest at 5 min of exercise, and peaked at 15 min. 13CO2 from the -2 min glucose tracer peaked at 45 min for C and G. 13CO2 increased rapidly from the 45 min lactate dose, and by 60 min of exercise was 33% greater than glucose in C or G, and 36% greater than fructose in G. 13CO2 production following tracer fructose ingestion was greater than glucose in the first 45 minutes in C and G. Cumulative recoveries of tracer during exercise were: 92%+/-5.3% for lactate in C and 25+/-4.0% for glucose in C or G. Recoveries for fructose in C and G were 75+/-5.9% and 26+/-6.6%, respectively. Lactate was used more rapidly and to a greater extent than fructose or glucose. CytoMax significantly enhanced HI.  相似文献   

13.
The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 +/- 20 vs. 42 +/- 16 g/h; P < 0.01) and cycling (57 +/- 16 vs. 35 +/- 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 +/- 4 vs. 23 +/- 3%; P < 0.01) and cycling (36 +/- 5 vs. 22 +/- 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 +/- 32 vs. 141 +/- 34 mmol/kg dry mass) or cycling (227 +/- 36 vs. 216 +/- 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.  相似文献   

14.
We examined the influence of various carbohydrates of fuel homeostasis and glycogen utilization during prolonged exercise. Seventy-five grams of glucose, fructose, or placebo were given orally to eight healthy males 45 min before ergometer exercise performed for 2 h at 55% of maximal aerobic power (VO2max). After glucose ingestion, the rises in plasma glucose (P less than 0.01) and insulin (P less than 0.001) were 2.4- and 5.8-fold greater than when fructose was consumed. After 30 min of exercise following glucose ingestion, the plasma glucose concentration had declined to a nadir of 3.9 +/- 0.3 mmol/l, and plasma insulin had returned to basal levels. The fall in plasma glucose was closely related to the preexercise glucose (r = 0.98, P less than 0.001) and insulin (r = 0.66, P less than 0.05) levels. The rate of endogenous glucose production and utilization rose similarly by 2.8-fold during exercise in fructose group and were 10-15% higher than in placebo group (P less than 0.05). Serum free fatty acid levels were 1.5- to 2-fold higher (P less than 0.01) after placebo than carbohydrate ingestion. Muscle glycogen concentration in the quadriceps femoris fell in all three groups by 60-65% (P less than 0.001) during exercise. These data indicate that fructose ingestion, though causing smaller perturbations in plasma glucose, insulin, and gastrointestinal polypeptide (GIP) levels than glucose ingestion, was no more effective than glucose or placebo in sparing glycogen during a long-term exercise.  相似文献   

15.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

16.
In this study, an oral glucose load was enriched with a [U-(13)C]glucose tracer to determine differences in substrate utilization between endurance-trained (T) and untrained (UT) subjects during submaximal exercise at the same relative and absolute workload when glucose is ingested. Six highly trained cyclists/triathletes [maximal workload (Wmax), 400 +/- 9 W] and seven UT subjects (Wmax, 296 +/- 8 W) were studied during 120 min of cycling exercise at 50% Wmax ( approximately 55% maximal O(2) consumption). The T subjects performed a second trial at the mean workload of the UT group (148 +/- 4 W). Before exercise, 8.0 ml/kg of a (13)C-enriched glucose solution (80 g/l) was ingested. During exercise, boluses of 2.0 ml/kg of the same solution were administered every 15 min. Measurements were made in the 90- to 120-min period when a steady state was present in breath (13)CO(2) and plasma glucose (13)C enrichment. Energy expenditure was higher in T than in UT subjects (58 vs. 47 kJ/min, respectively; P < 0.001) at the same relative intensity. This was completely accounted for by an increased fat oxidation (0.57 vs. 0.40 g/min; P < 0.01). At the same absolute intensity, fat oxidation contributed more to energy expenditure in the T compared with the UT group (44 vs. 33%, respectively; P < 0.01). The reduction in carbohydrate oxidation in the T group was explained by a diminished oxidation rate of muscle glycogen (indirectly assessed by using tracer methodology at 0.72 +/- 0.1 and 1.03 +/- 0.1 g/min, respectively; P < 0.01) and liver-derived glucose (0.15 +/- 0.03 and 0.22 +/- 0.02 g/min, respectively; P < 0.05). Exogenous glucose oxidation rates were similar during all trials (+/-0.70 g/min).  相似文献   

17.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

18.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

19.
Seven cyclists exercised at 70% of maximal O2 uptake (VO2max) until fatigue (170 +/- 9 min) on three occasions, 1 wk apart. During these trials, plasma glucose declined from 5.0 +/- 0.1 to 3.1 +/- 0.1 mM (P less than 0.001) and respiratory exchange ratio (R) fell from 0.87 +/- 0.01 to 0.81 +/- 0.01 (P less than 0.001). After resting 20 min the subjects attempted to continue exercise either 1) after ingesting a placebo, 2) after ingesting glucose polymers (3 g/kg), or 3) when glucose was infused intravenously ("euglycemic clamp"). Placebo ingestion did not restore euglycemia or R. Plasma glucose increased (P less than 0.001) initially to approximately 5 mM and R rose (P less than 0.001) to approximately 0.83 with glucose infusion or carbohydrate ingestion. Plasma glucose and R then fell gradually to 3.9 +/- 0.3 mM and 0.81 +/- 0.01, respectively, after carbohydrate ingestion but were maintained at 5.1 +/- 0.1 mM and 0.83 +/- 0.01, respectively, by glucose infusion. Time to fatigue during this second exercise bout was significantly longer during the carbohydrate ingestion (26 +/- 4 min; P less than 0.05) or glucose infusion (43 +/- 5 min; P less than 0.01) trials compared with the placebo trial (10 +/- 1 min). Plasma insulin (approximately 10 microU/ml) and vastus lateralis muscle glycogen (approximately 40 mmol glucosyl U/kg) did not change during glucose infusion, with three-fourths of total carbohydrate oxidation during the second exercise bout accounted for by the euglycemic glucose infusion rate (1.13 +/- 0.08 g/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号