首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of a tumor angiogenesis specific ligand would allow targeting of tumor vasculature. Lipidic vehicles can be used to deliver therapeutic agents for treatment of disease or contrast agents for molecular imaging. A targeting ligand would allow specific delivery of such formulations to angiogenic sites, thereby reducing side effects and gaining efficiency. Anginex, a synthetic 33-mer angiostatic peptide, has been described to home angiogenically activated endothelium, suggesting an ideal candidate as targeting ligand. To investigate this application of anginex, fluorescently labeled paramagnetic liposomes were conjugated with anginex. Using phase contrast and fluorescence microscopy as well as magnetic resonance imaging (MRI), we demonstrate that anginex-conjugated liposomes bind specifically to activated endothelial cells, suggesting application as an angiogenesis targeting agent for molecular targeting and molecular imaging of angiogenesis-dependent disease.  相似文献   

2.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

3.
ABSTRACT: BACKGROUND: The upregulation of intercellular adhesion molecule-1 (ICAM-1) on the endothelium of bloodvessels in response to pro-inflammatory stimuli is of major importance for the regulation oflocal inflammation in cardiovascular diseases such as atherosclerosis, myocardial infarctionand stroke. In vivo molecular imaging of ICAM-1 will improve diagnosis and follow-up ofpatients by non-invasive monitoring of the progression of inflammation. RESULTS: A paramagnetic liposomal contrast agent functionalized with anti-ICAM-1 antibodies formultimodal magnetic resonance imaging (MRI) and fluorescence imaging of endothelialICAM-1 expression is presented. The ICAM-1-targeted liposomes were extensivelycharacterized in terms of size, morphology, relaxivity and the ability for binding to ICAM-1-expressing endothelial cells in vitro. ICAM-1-targeted liposomes exhibited strong binding toendothelial cells that depended on both the ICAM-1 expression level and the concentration ofliposomes. The liposomes had a high longitudinal and transversal relaxivity, which enableddifferentiation between basal and upregulated levels of ICAM-1 expression by MRI. Theliposome affinity for ICAM-1 was preserved in the competing presence of leukocytes andunder physiological flow conditions. CONCLUSION: This liposomal contrast agent displays great potential for in vivo MRI of inflammation-relatedICAM-1 expression.  相似文献   

4.
BACKGROUND: Evaluation of lymphedema and lymph node metastasis in humans has relied primarily on invasive or radioactive modalities. While noninvasive technologies such as magnetic resonance imaging (MRI) offer the potential for true three-dimensional imaging of lymphatic structures, invasive modalities, such as optical fluorescence microscopy, provide higher resolution and clearer delineation of both lymph nodes and lymphatic vessels. Thus, contrast agents that image lymphatic vessels and lymph nodes by both fluorescence and MRI may further enhance our understanding of the structure and function of the lymphatic system. Recent applications of bimodal (fluorescence and MR) contrast agents in mice have not achieved clear visualization of lymphatic vessels and nodes. Here the authors describe the development of a nanoparticulate contrast agent that is taken up by lymphatic vessels to draining lymph nodes and detected by both modalities. METHODS: A unique nanoparticulate contrast agent composed of a polyamidoamine dendrimer core conjugated to paramagnetic contrast agents and fluorescent probes was synthesized. Anesthetized mice were injected with the nanoparticulates in the hind footpads and imaged by MR and fluorescence microscopy. High resolution MR and fluorescence images were obtained and compared to traditional techniques for lymphatic visualization using Evans blue dye. RESULTS: Lymph nodes and lymphatic vessels were clearly observed by both MRI and fluorescence microscopy using the bimodal nanoparticulate contrast agent. Characteristic tail-lymphatics were also visualized by both modalities. Contrast imaging yielded a higher resolution than the traditional method employing Evans blue dye. MR data correlated with fluorescence and Evans blue dye imaging. CONCLUSION: A bimodal nanoparticulate contrast agent facilitates the visualization of lymphatic vessels and lymph nodes by both fluorescence microscopy and MRI with strong correlation between the two modalities. This agent may translate to applications such as the assessment of malignancy and lymphedema in humans and the evaluation of lymphatic vessel function and morphology in animal models.  相似文献   

5.
A novel bimodal fluorescent and paramagnetic liposome is described for cellular labeling. In this study, we show the synthesis of a novel gadolinium lipid, Gd.DOTA.DSA, designed for liposomal cell labeling and tumor imaging. Liposome formulations consisting of this lipid were optimized in order to allow for maximum cellular entry, and the optimized formulation was used to label HeLa cells in vitro. The efficiency of this novel bimodal Gd-liposome formulation for cell labeling was demonstrated using both fluorescence microscopy and magnetic resonance imaging (MRI). The uptake of Gd-liposomes into cells induced a marked reduction in their MRI T 1 relaxation times. Fluorescence microscopy provided concomitant proof of uptake and revealed liposome internalization into the cell cytosol. The optimized formulation was also found to exhibit minimal cytotoxicity and was shown to have capacity for plasmid DNA (pDNA) transfection. A further second novel neutral bimodal Gd-liposome is described for the labeling of xenograft tumors in vivo utilizing the enhanced permeation and retention effect (EPR). Balb/c nude mice were inoculated with IGROV-1 cells, and the resulting tumor was imaged by MRI using these in vivo Gd-liposomes formulated with low charge and a poly(ethylene glycol) (PEG) calyx for long systemic circulation. These Gd-liposomes which were less than 100 nm in size were shown to accumulate in tumor tissue by MRI, and this was also verified by fluorescence microscopy of histology samples. Our in vivo tumor imaging results demonstrate the effectiveness of MRI to observe passive targeting of long-term circulating liposomes to tumors in real time, and allow for MRI directed therapy, wherein the delivery of therapeutic genes and drugs to tumor sites can be monitored while therapeutic effects on tumor mass and/or size may be simultaneously observed, quantitated, and correlated.  相似文献   

6.
A hallmark of cellular processes is the spatio-temporally regulated interplay of biochemical components. Assessing spatial information of molecular interactions within living cells is difficult using traditional biochemical methods. Developments in green fluorescent protein technology in combination with advances in fluorescence microscopy have revolutionised this field of research by providing the genetic tools to investigate the spatio-temporal dynamics of biomolecules in live cells. In particular, fluorescence lifetime imaging microscopy (FLIM) has become an inevitable technique for spatially resolving cellular processes and physical interactions of cellular components in real time based on the detection of Förster resonance energy transfer (FRET). In this review, we provide a theoretical background of FLIM as well as FRET-FLIM analysis. Furthermore, we show two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells as well as in whole plants.  相似文献   

7.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.  相似文献   

8.
This paper highlights some of the key technologies of using two innovative molecular imaging modalites, magnetic resonance imaging (MRI) and nonlinear optical microscopy, for imaging intravenously injected ultra small paramagnetic iron oxide nanoparticles cross linked with antibodies (CLUSPIO) in the amyotrophic lateral sclerosis (ALS) experimental model in vivo or ex vivo, respectively. Intensive efforts have been made in investigating the causes of abnormalities in lipid metabolism, monitored in some neurodegenerative disorders systems. It has been shown that an abnormal accumulation of some common lipids in motor nerve cells may play a critical role in the development of amyotrophic lateral sclerosis. The presented experiments were performed on brain specimens from the transgenic rat model expressing multiple copies of mutated (G93A) human SOD-1 gene, after CD4+ lymphocytes were magnetically labeled with i.v.i. CLUSPIO antibodies. In vivo MRI revealed marked signal intensity enhancements in specific pathological regions of the ALS rat brain as compared to the wild type. Surface-enhanced coherent anti-Stokes Raman scattering (SECARS) microscopy indicated cellular interactions based on lipids association to anti-CD4 CLUSPIO.  相似文献   

9.
Apoptosis, or programmed cell death, plays an important role in the etiology of a variety of diseases, including cancer. Visualization of apoptosis would allow both early detection of therapy efficiency and evaluation of disease progression. To that aim we developed a novel annexin A5-conjugated bimodal nanoparticle. The nanoparticle is composed of a quantum dot that is encapsulated in a paramagnetic micelle to enable its use both for optical imaging and MRI. Multiple recombinant human annexin A5 protein molecules were covalently coupled to the nanoparticle for targeting. In this study the specificity of the annexin A5-conjugated nanoparticles for apoptotic cells was demonstrated both with fluorescence microscopy and MRI, which confirms its potential for the detection of apoptosis with both imaging modalities in vivo.  相似文献   

10.
Exteriorized phosphatidylserine (PS) residues in apoptotic cells trigger rapid phagocytosis by macrophage scavenger receptor pathways. Mimicking apoptosis with liposomes containing PS may represent an attractive approach for molecular imaging of atherosclerosis. We investigated the utility of paramagnetic gadolinium liposomes enriched with PS (Gd-PS) in imaging atherosclerotic plaque. Gd-PS-containing Gd-conjugated lipids, fluorescent rhodamine, and PS were prepared and characterized. Cellular uptake in RAW macrophages (fluorescent uptake of rhodamine) was studied on a fluorescence plate reader, while Gd-PS-induced alteration in T1 relaxivity was evaluated using a 1.5 T MRI scanner. RAW cells demonstrate PS-dependent uptake of across a range of concentrations (2, 6, 12, and 20%) in comparison to control liposomes with no PS (0%). In vivo performance of Gd-PS was evaluated in the ApoE−/− mouse model by collection of serial T1 weighted gradient echo MR images using an 11.7 T MRI system and revealed rapid and significant enhancement of the aortic wall that was seen for at least 4 h after injection. Gd-PS-enriched liposomes enhance atherosclerotic plaque and colocalize with macrophages in experimental atherosclerosis.  相似文献   

11.
Superparamagnetic iron oxide (SPIO) nanoparticles, either modified or in combination with other macromolecules, are being used for magnetic labeling of stem cells and other cells to monitor cell trafficking by magnetic resonance imaging (MRI) in experimental models. The correlation of histology to MRI depends on the ability to detect SPIO-labeled cells using Prussian blue (PB) stain and fluorescent tags to cell surface markers. Exposure of PB-positive sections to ultraviolet light at a wavelength of 365 nm commonly used fluorescence microscopy can result in color transformation of PB-positive material from blue to brown. Although the PB color transformation is primarily an artifact that may occur during fluorescence microscopy, the transformation can be manipulated using imaging process software for the detection of low levels of iron labeled cells in tissues samples.  相似文献   

12.
The contrast and intensity of a magnetic resonance image (MRI) is affected in part by the spin-lattice relaxation time (T1) and spin-spin relaxation time (T2). Certain paramagnetic metal ions can alter these parameters suggesting that they may be useful contrast agents in MRI. In this study, Mn++ and Fe+++ were examined for their effects on T1 and T2 in human placenta and amniotic fluid (AF) at concentrations between 0.002 and 2.0 mM. Both Mn++ and Fe+++ produced a dose-dependent decrease in placental and AF T1. The effects of Fe+++ were not pronounced, decreasing T1 only at the highest concentrations, and not to the same degree as Mn++. Placental T2 was also significantly decreased by Mn++, whereas Fe+++ had no effect. These differences may be due to molecular binding, uptake by the placenta, or the paramagnetic characteristics of the metals. The results suggest that Mn++ will alter human placental MRI for T1 and to a lesser extent T2-dependent imaging processes. Fe+++ should have little or no effect on human placental MRI, except at very high concentrations.  相似文献   

13.
Magnetic resonance imaging (MRI) has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp) strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxtivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxtivity (R1/Gd). The observed relaxtivity changes are largely due to an increase in the rotational correlation time tau r of the lanthanide. Three applications of the developed system are demonstrated: (1) imaging of nanomolar amounts of an oxidoreductase (peroxidase); (2) detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3) imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin-peroxidase conjugate. The development of "enzyme sensing" probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.  相似文献   

14.
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers.  相似文献   

15.

Objective

Bone-marrow derived endothelial progenitor cells (EPCs) play an important role in tumor neovasculature. Due to their tumor homing property, EPCs are regarded as promising targeted vectors for delivering therapeutic agents in cancer treatment. Consequently, non-invasive confirmation of targeted delivery via imaging is urgently needed. This study shows the development and application of a novel dual-modality probe for in vivo non-invasively tracking of the migration, homing and differentiation of EPCs.

Methods

The paramagnetic/near-infrared fluorescence probe Conjugate 1 labeled EPCs were systemically transplanted into mice bearing human breast MDA-MB-231 tumor xenografts. Magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescence optical imaging were performed at different stages of tumor development. The homing of EPCs and the tumor neovascularization were further evaluated by immunofluorescence.

Results

Conjugate 1 labeled EPCs can be monitored in vivo by MRI and NIR fluorescence optical imaging without altering tumor growth for up to three weeks after the systemic transplantation. Histopathological examination confirmed that EPCs were recruited into the tumor bed and then incorporated into new vessels two weeks after the transplantation. Tumor size and microvessel density was not influenced by EPCs transplantation in the first three weeks.

Conclusions

This preclinical study shows the feasibility of using a MRI and NIR fluorescence optical imaging detectable probe to non-invasively monitor transplanted EPCs and also provides strong evidence that EPCs are involved in the development of endothelial cells during the tumor neovascularization.  相似文献   

16.
17.
Filamentous-actin plays a crucial role in a majority of cell processes including motility and, in immune cells, the formation of a key cell-cell interaction known as the immunological synapse. F-actin is also speculated to play a role in regulating molecular distributions at the membrane of cells including sub-membranous vesicle dynamics and protein clustering. While standard light microscope techniques allow generalized and diffraction-limited observations to be made, many cellular and molecular events including clustering and molecular flow occur in populations at length-scales far below the resolving power of standard light microscopy. By combining total internal reflection fluorescence with the super resolution imaging method structured illumination microscopy, the two-dimensional molecular flow of F-actin at the immune synapse of T cells was recorded. Spatio-temporal image correlation spectroscopy (STICS) was then applied, which generates quantifiable results in the form of velocity histograms and vector maps representing flow directionality and magnitude. This protocol describes the combination of super-resolution imaging and STICS techniques to generate flow vectors at sub-diffraction levels of detail. This technique was used to confirm an actin flow that is symmetrically retrograde and centripetal throughout the periphery of T cells upon synapse formation.  相似文献   

18.
Spectral and multiphoton imaging is the preferred approach for non-invasive study allowing deeper penetration to image molecular processes in living cells. But currently available fluorescence microscopic techniques based on fluorescence intensity, such as confocal or multiphoton excitation, cannot provide detailed quantitative information about the dynamic of complex cellular structure (molecular interaction). Due to the variation of the probe concentration, photostability, cross-talking, its effects cannot be distinguished in simple intensity images. Therefore, Time Resolved fluorescence image is required to investigate molecular interactions in biological systems. Fluorescence lifetimes are generally absolute, sensitive to environment, independent of the concentration of the probe and allow the use of probes with overlapping spectra but that not have the same fluorescence lifetime. In this work, we present the possibilities that are opened up by Fluorescence Lifetime Imaging Microscopy, firstly to collect images based on fluorescence lifetime contrast of GFP variants used as a reporter of gene expression in chondrocytes and secondly, to measure molecular proximity in erythrocyte (glycophorin/membrane) by Fluorescence Resonance Energy Transfer (FLIM-FRET).  相似文献   

19.
Host-pathogen interactions are highly regulated, dynamic processes that take place at the molecular, cellular and organ level. Innovative imaging technologies have emerged recently to investigate the underlying mechanisms of host-pathogen interactions. Innovations in fluorescence microscopy enable functional studies on the single-cell level. New light microscopes have been developed that improve the resolution to less than 100 nm. At the other extreme, intravital microscopy enables the correlation of cellular events on the organ level. This is also achieved by alternatives to microscopy such as bioluminescence, positron-emission tomography and magnetic resonance imaging. The methodologies described here will have a tremendous effect on our understanding of host-pathogen interactions.  相似文献   

20.
In the present study, we describe a multimodal QD probe with combined fluorescent and paramagnetic properties, based on silica-shelled single QD micelles with incorporated paramagnetic substances [tris(2,2,6,6-tetramethyl-3,5-heptanedionate)/gadolinium] into the micelle and/or silica coat. The probe was characterized with high photoluminescence quantum yield and good positive MRI contrast, low cytotoxicity, and easy intracellular delivery in viable cells. The intravenous administration of the probe in experimental animals did not affect significantly the physiological parameters and microcirculation (e.g., heart rate, blood pressure, diameter and shape of blood vessels), which makes it appropriate for tracing of blood circulation and in vivo multimodal imaging using fluorescent confocal microscopy, two-photon microscopy, and MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号