首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.  相似文献   

2.
The genetic system controlling recombination in the silkworm   总被引:2,自引:1,他引:1       下载免费PDF全文
Ebinuma H  Yoshitake N 《Genetics》1981,99(2):231-245
The nature of recombination modifiers was investigated in Bombyx mori lines selected for high (H) and low (L) recombination rates between the pS and Y loci in chromosome 2. Since the mean recombination rates for the H x L and L x H F1 crosses were approximately intermediate between those of high and low lines, the cytoplasmic maternal effect and difference in the activity of recombination modifiers between marked and unmarked second chromosomes were not detected. The H x (L x H), H x (H x L), L x (L x H) and L x (H x L) backcrosses indicated the presence of additive and dominance effects of marked and unmarked second chromosomes and the remaining chromosomes.——Recombination rates between the pS and Y loci in chromosome 2 and half-nonrecombination rates between the pe and re loci in chromosome 5 of high and low lines indicated that these recombination modifiers caused changes in the recombination frequency between pS and Y in chromosome 2, but not between pe and re in chromosome 5.——There were no differences in viability between individuals having the second chromosomes of the recombinant types [pS +, pY (H); pS +, + Y (L)] and those of the nonrecombinant types [pS Y, p + (H); pS Y, + + (L)] in both high and low lines. Mean recombination rates measured in cis [pS Y/p + (H); pS Y/+ + (L)] and trans [pS +/p Y (H); pS +/+ Y (L)] males were the same in the high but not in the low line. No segregation of a single recombination modifier was indicated by the distribution of recombination rates measured in trans males [pS +/p Y (H); pS +/+ Y (L)] of high and low lines. Accordingly, the recombination modifiers distributed on chromosome 2 in the heterozygous condition were not gross chromosomal aberrations, but polygenic factors in the low line.  相似文献   

3.
Ebinuma H 《Genetics》1987,117(3):521-531
The effect of modifiers on recombination frequency between Ze and lem loci on chromosome 3 to elucidate the chromosome specificity of modification and the distribution of modifiers using Bombyx mori lines selected for high (H) and low (L) recombination rates between the pS and Y loci in chromosome 2 was investigated. By crossing to the Z (Ze lem/++) line, the recombination rate between the pS and Y loci in chromosome 2 was decreased from 28.18 to 23.33 in the H line and was increased from 4.92 to 16.05 in the L line. On the other hand, the recombination rate between the Ze and lem loci in chromosome 3 was increased from 16.21 to 20.21 in the Z line by crossing to the H line, but also increased to 19.02 by crossing to the L line. The significant correlation observed between the transformed recombination rates of chromosomes 2 and 3 in the (Z x L) x L backcross indicated that there were common factors modifying recombination frequency in chromosomes 2 and 3 or different factors linked to the same chromosomes. In the family of L x [(Z x L) x L] backcross, the distribution of transformed recombination rates indicated that there were several factors in the remaining chromosomes which were modifying recombination frequency in chromosome 2 but not in chromosome 3. It was also indicated that these factors were linked to different chromosomes than are the factors modifying recombination frequency in chromosome 3. In order to interpret these results, one genetic system model controlling recombination that consists of general and local recombination modifiers was proposed. The evolution of dynamic genetic systems that would effectively reduce recombinational load without reducing the advantage of recombination was discussed.  相似文献   

4.
Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3Δ/als3Δ mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin–cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.  相似文献   

5.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

6.
The phylogenetic relationship of the now fully sequenced species Drosophila erecta and D. yakuba with respect to the D. melanogaster species complex has been a subject of controversy. All three possible groupings of the species have been reported in the past, though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. Using the whole genomes of each of these species as well as the four other fully sequenced species in the subgenus Sophophora, we set out to investigate the placement of D. erecta and D. yakuba in the D. melanogaster species group and to understand the cause of the past incongruence. Though we find that the phylogeny grouping D. erecta and D. yakuba together is the best supported, we also find widespread incongruence in nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The time inferred to span the two key speciation events is short enough that under the coalescent model, the incongruence could be the result of incomplete lineage sorting. Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree were spatially clustered. Support for the different trees was found to be linked to recombination such that adjacent genes support the same tree most often in regions of low recombination and substitutions supporting the same tree are most enriched roughly on the same scale as linkage disequilibrium, also consistent with lineage sorting. The incongruence was found to be statistically significant and robust to model and species choice. No systematic biases were found. We conclude that phylogenetic incongruence in the D. melanogaster species complex is the result, at least in part, of incomplete lineage sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many comparative genomics datasets. Methods to infer the correct species tree, the history of every base in the genome, and comparative methods that control for and/or utilize this information will be valuable advancements for the field of comparative genomics.  相似文献   

7.
Gunge N  Nakatomi Y 《Genetics》1972,70(1):41-58
Yeast heterozygous for mating type lacks the ability to conjugate as judged by the mass-mating technique and accordingly is designated "non-mater". However, the non-mater shows rare mating ability with a frequency of less than 10-6. In the present study, the RD auxotroph mating method was mainly employed with the intention of examining the rare mating ability of various non-maters, using lactate ethanol minimal medium as a selective medium for hybridization. Crosses of x a, aα x a, aaα x a, aαα x a, etc. resulted in the production of respective hybrids with a relatively high frequency of about 10-6 to 10-7, whereas crosses of aaα x a, aαα x α, aaαα x a, aaαα x α, etc. resulted in hybrids with an extremely low frequency of about less than 10-8. Genetic analyses revealed that the rare matings were mostly caused by the presence of cells derived from the non-maters in which mating type had converted to a homozygous genotype. Mitotic recombination was shown to be a likely explanation for most of the conversion, judging from associated exchange of an outside marker, thr4. By successive employment of the RD auxotroph mating method, it was possible to produce a series of polyploid yeasts, triploids to octoploids. The DNA content and the cell volume were observed to increase parallel to the elevated ploidy states.  相似文献   

8.
The mutation rates of specific loci and chromosome regions were estimated for two types of dysgenic hybrid males. These came from crosses between P or Q males and M females in the P-M system of hybrid dysgenesis. The M x P hybrids were the more mutable for each of the loci and chromosome regions tested. The Beadex locus was highly mutable in these hybrids but did not mutate at all in the sample of gametes from the M x Q hybrids. The singed locus had 75% of the mutability of Beadex in the M x P hybrids; it was also mutable in the M x Q hybrids. The white locus was only slightly mutable in the M x P hybrids and not at all mutable in the M x Q hybrids. The mutations in singed and white probably arose from the insertion of P elements into these loci; the mutations at Beadex probably involved the action of a P element located near this locus on the X chromosome of the P strain that was used in the experiments. Mutations in two chromosome regions, one including the zeste-white loci and the other near the miniature locus, were much more frequent in the M x P hybrids than in the M x Q hybrids. These mutations also probably arose from P element insertions. The implication is that insertion mutations occur infrequently in the M x Q hybrids, possibly because most of the P elements they carry are defective. In M x P hybrids, there is variation among loci with respect to P elements mutagenesis, indicating that P elements possess a degree of insertional specificity.  相似文献   

9.
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans.  相似文献   

10.
To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.  相似文献   

11.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

12.
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.  相似文献   

13.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

14.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

15.
Diploid hybrids of Saccharomyces cerevisiae and its closest relative, Saccharomyces paradoxus, are viable, but the sexual gametes they produce are not. One of several possible causes of this gamete inviability is incompatibility between genes from different species—such incompatible genes are usually called “speciation genes.” In diploid F1 hybrids, which contain a complete haploid genome from each species, the presence of compatible alleles can mask the effects of (recessive) incompatible speciation genes. But in the haploid gametes produced by F1 hybrids, recessive speciation genes may be exposed, killing the gametes and thus preventing F1 hybrids from reproducing sexually. Here I present the results of an experiment to detect incompatibilities that kill hybrid gametes. I transferred nine of the 16 S. paradoxus chromosomes individually into S. cerevisiae gametes and tested the ability of each to replace its S. cerevisiae homeolog. All nine chromosomes were compatible, producing nine viable haploid strains, each with 15 S. cerevisiae chromosomes and one S. paradoxus chromosome. Thus, none of these chromosomes contain speciation genes that were capable of killing the hybrid gametes that received them. This is a surprising result that suggests that such speciation genes do not play a major role in yeast speciation.  相似文献   

16.
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located at the junction of the two replication arms. Xer recombination is tightly controlled by the septal protein FtsK. XerCD recombinases and FtsK are found on most sequenced eubacterial genomes, suggesting that the Xer recombination system as described in E. coli is highly conserved among prokaryotes. We show here that Streptococci and Lactococci carry an alternative Xer recombination machinery, organized in a single recombination module. This corresponds to an atypical 31-bp recombination site (difSL) associated with a dedicated tyrosine recombinase (XerS). In contrast to the E. coli Xer system, only a single recombinase is required to recombine difSL, suggesting a different mechanism in the recombination process. Despite this important difference, XerS can only perform efficient recombination when difSL sites are located on chromosome dimers. Moreover, the XerS/difSL recombination requires the streptococcal protein FtsKSL, probably without the need for direct protein-protein interaction, which we demonstrated to be located at the division septum of Lactococcus lactis. Acquisition of the XerS recombination module can be considered as a landmark of the separation of Streptococci/Lactococci from other firmicutes and support the view that Xer recombination is a conserved cellular function in bacteria, but that can be achieved by functional analogs.  相似文献   

17.
Parma DH  Heath GT  Che CC  Annest JL 《Genetics》1977,87(4):593-619
Genetic analyses of 49 duplications of the rII region of bacteriophage T4D suggests that there is a non-random relationship between the end points of duplicated segments, that relaxed packaging restrictions have little if any effect on the distribution of duplications, that segregation is 3–4 times more frequent than normal recombination for the same interval, and that non-tandem duplications are rare. Extrapolation of the r1231 x rJ101 cross data suggests that the minimum frequency of duplications/genome is 1.7 x 10-6, but possibly 3.4 x 10-4.  相似文献   

18.
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.  相似文献   

19.
The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2–3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3′ coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with ~ 33 new amino acid residues. In addition, a novel intron-containing 5′ UTR and novel 3′ UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.  相似文献   

20.
Death by infection is often as much due to the host's reaction as it is to the direct result of microbial action. Here we identify genes in both the host and microbe that are involved in the pathogenesis of infection and disease in Drosophila melanogaster challenged with Salmonella enterica serovartyphimurium (S. typhimurium). We demonstrate that wild-type S. typhimurium causes a lethal systemic infection when injected into the hemocoel of D. melanogaster. Deletion of the gene encoding the secreted bacterial effector Salmonella leucine-rich (PslrP) changes an acute and lethal infection to one that is persistent and less deadly. We propose a model in which Salmonella secreted effectors stimulate the fly and thus cause an immune response that is damaging both to the bacteria and, subsequently, to the host. In support of this model, we show that mutations in the fly gene eiger, a TNF homolog, delay the lethality of Salmonella infection. These results suggest that S. typhimurium-infected flies die from a condition that resembles TNF-induced metabolic collapse in vertebrates. This idea provides us with a new model to study shock-like biology in a genetically manipulable host. In addition, it allows us to study the difference in pathways followed by a microbe when producing an acute or persistent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号