首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肌卫星细胞在失重肌萎缩中的可塑性变化及机制   总被引:1,自引:0,他引:1  
肌卫星细胞在骨骼肌生长发育和出生后骨骼肌损伤修复中起着重要的作用,但是有关肌萎缩中肌卫星细胞的可塑性变化、作用及其机制尚不清楚.本研究采用小鼠尾悬吊模拟失重效应诱导失重肌萎缩,动态分析了失重肌萎缩发生过程中不同类型肌纤维的肌卫星细胞数量和增殖、分化潜能可塑性的改变,发现在失重肌萎缩过程中,处于安静状态的肌卫星细胞显著增多、激活增殖的肌卫星细胞显著减少,而具有成肌分化潜能的肌卫星细胞有持续减少趋势.此外,在失重肌萎缩比目鱼肌单根肌纤维移出的体外培养中,证明了失重肌萎缩肌纤维肌卫星细胞可塑性降低的特征性变化.进一步,通过对比分析Smad3基因敲除及其同窝野生型小鼠,在失重肌萎缩中肌卫星细胞可塑性的差异性变化,揭示了Smad3在调控失重肌萎缩肌卫星细胞可塑性变化中的关键作用.  相似文献   

2.
A proteomic analysis was performed comparing normal rat soleus muscle to soleus muscle that had undergone either 0.5, 1, 2, 4, 7, 10 and 14 days of hindlimb suspension-induced atrophy or hindlimb suspension-induced atrophied soleus muscle that had undergone 1 hour, 8 hour, 1 day, 2 day, 4 day and 7 days of reweighting-induced hypertrophy. Muscle mass measurements demonstrated continual loss of soleus mass occurred throughout the 21 days of hindlimb suspension; following reweighting, atrophied soleus muscle mass increased dramatically between 8 hours and 1 day post reweighting. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 29 soleus proteins. Reweighting following atrophy demonstrated statistically significant changes in the relative levels of 15 soleus proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both atrophied and hypertrophied soleus muscle. Five differentially regulated proteins from the hindlimb suspended atrophied soleus muscle were identified while five proteins were identified in the reweighting-induced hypertrophied soleus muscles. The identified proteins could be generally grouped together as metabolic proteins, chaperone proteins and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the skeletal muscle proteome occur during disuse-induced soleus muscle atrophy and reweighting hypertrophy.  相似文献   

3.
4.
Disuse can induce numerous adaptive alterations in skeletal muscle. In the present study the effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450 g) and juvenile (200 g) rats after 1, 7, or 14 days of whole body suspension. Quantitatively and qualitatively the soleus (S), gastrocnemius (G), plantaris (P), and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicated a less rapid rate of response in adult muscles. This was corroborated by assessment of muscle alpha-actin mRNA levels, which indicated a rapid (within 1 day) and significant (P less than 0.05) effect in juveniles but not in adults. The results of this investigation indicate 1) a qualitatively similar differential effect of unloading on muscles of adults and juveniles, 2) a quantitatively reduced and less rapid effect of suspension on adult muscles, and 3) a close similarity of adult and juvenile muscle responses during suspension and spaceflight, suggesting that this ground-based model simulates many of the unloading effects of weightlessness.  相似文献   

5.
The response of activated skeletal muscle to a ramp stretch is complex. Force rises rapidly above the isometric plateau during the initial phase of stretch. However, after a strain of approximately 1-2%, force yields and continues to rise but with a slower slope. The resistance to stretch during the initial phase can be characterized by the stiffness of the muscle and/or the preyield modulus (E(pre)). Similarly, a measure of modulus also can be used to characterize the postyield modulus response (E(post)). This study examined the effects of muscle atrophy and altered myosin heavy chain (MyHC) isoform composition on both E(pre) and E(post). Female Sprague-Dawley rats were assigned to 1) control group, 2) a hypothyroid group, 3) a hyperthyroid group, 4) a hindlimb suspension group, and 5) a hindlimb suspension + hyperthyroid group. These interventions were used either to alter the MyHC isoform composition of the muscle or to induce atrophy. Soleus muscles were stretched at strain rates that ranged from approximately 0.15 to 1.25 muscle length/s. The findings of this study demonstrate that 4 wk of hindlimb suspension can produce a large (i.e., 40-60%) reduction in E(pre). Hindlimb suspension did not produce a proportional change in E(post). Analyses of the E(pre)-strain rate relationship demonstrated that there was little dependence on MyHC isoform composition. In summary, the disproportionate decrease in E(pre) of atrophied muscle has important implications with respect to issues related to joint stability, especially under dynamic conditions and conditions where the static joint stabilizers (i.e., ligaments) have been compromised by injury.  相似文献   

6.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries and intercapillary anastomoses with their functional alteration in hemodynamics. To clarify the three-dimensional architecture of the capillary network, contrast medium-injected rat soleus muscles were visualized clearly using a confocal laser scanning microscope, and sections were stained by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) and with anti-von Willebrand factor. In vivo, the red blood cell velocity of soleus muscle capillaries were determined with a pencil-lens intravital microscope brought into direct contact with the soleus surface. After HU, the total muscle mass, myofibril protein mass, and slow-type myosin heavy chain content were significantly lower. The number of capillaries paralleling muscle fiber and red blood cells velocity were higher in atrophied soleus. However, the mean capillary volume and capillary luminal diameter were significantly smaller after HU than in the age-matched control group. In addition, we found that the number of anastomoses and the tortuosity were significantly lower and TUNEL-positive endothelial cells were observed in atrophied soleus muscles, especially the anastomoses and/or tortuous capillaries. These results indicate that muscle atrophy by HU generates structural alterations in the capillary network, and apoptosis appears to occur in the endothelial cell of the muscle capillaries.  相似文献   

7.
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.  相似文献   

8.
The present study involved a global analysis of genes whose expression was modified in rat soleus muscle atrophied after hindlimb suspension (HS). HS muscle unloading is a common model for muscle disuse that especially affects antigravity slow-twitch muscles such as the soleus muscle. A cDNA cloning strategy, based on suppression subtractive hybridization technology, led to the construction of two normalized soleus muscle cDNA libraries that were subtracted in opposite directions, i.e., atrophied soleus muscle cDNAs subtracted by control cDNAs and vice versa. Differential screening of the two libraries revealed 34 genes with altered expression in HS soleus muscle, including 11 novel cDNAs, in addition to the 2X and 2B myosin heavy chain genes expressed only in soleus muscles after HS. Gene up- and down-regulations were quantified by reverse Northern blot and classical Northern blot analysis. The 25 genes with known functions fell into seven important functional categories. The homogeneity of gene alterations within each category gave several clues for unraveling the interplay of cellular events implied in the muscle atrophy phenotype. In particular, our results indicate that modulations in slow- and fast-twitch-muscle component balance, the protein synthesis/secretion pathway, and the extracellular matrix/cytoskeleton axis are likely to be key molecular mechanisms of muscle atrophy. In addition, the cloning of novel cDNAs underlined the efficiency of the chosen technical approach and gave novel possibilities to further decipher the molecular mechanisms of muscle atrophy.  相似文献   

9.
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.  相似文献   

10.
Responses of the properties of connectin molecules in the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus muscles of rats to 3 days of unloading with or without 3-day reloading were investigated. The wet weight (relative to body wt) of Sol, not of extensor digitorum longus, in the unloaded group was significantly less than in the age-matched control (P < 0.05). Immunoelectron microscopic analyses showed that a monoclonal antibody against connectin (SM1) bound to the I-band region close to the edge of the A band at resting length and moved reversibly away from the Z line as the muscle fibers were stretched. In Sol, the displacement of the SM1-bound dense spots in response to stretching decreased after hindlimb suspension. There were no changes in the molecular weights and the percent distributions of alpha- and beta-connectin in both muscles after hindlimb suspension. A significant increment of percent beta-connectin in Sol was observed after 3 days of reloading after hindlimb suspension (P < 0.05). It is suggested that the elasticity of connectin filaments in the I-band region of the atrophied Sol fibers was reduced relative to that of the control fibers. The lack of the elasticity in atrophied muscle fibers may cause a decrease in contractile function.  相似文献   

11.
《Tissue & cell》2016,48(5):533-543
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.  相似文献   

12.
The effects of torbafylline on the prevention of and the recovery from 5 weeks of hindlimb suspension induced atrophy were analyzed in rat soleus and extensor digitorum longus muscles. Muscle alterations were investigated by determining a suite of electrophysiological, histochemical, and muscle ultrastructural characteristics. Administration of torbafylline during the suspension period was ineffective in preventing any of the observed muscle atrophic changes. Application of torbafylline during the recovery period resulted in a faster recovery of some soleus muscle structural and functional properties. Mitochondrial volume densities and capillary to fiber ratios returned towards baseline values earlier in the recovery process with torbafylline. Furthermore, the drug significantly improved soleus muscle fatigue resistance 4 weeks after cessation of hindlimb suspension.  相似文献   

13.
Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway   总被引:3,自引:0,他引:3  
In this study, the role of the calcineurinpathway in skeletal muscle atrophy and atrophy-reducing interventionswas investigated in rat soleus muscles. Because calcineurin has beensuggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in theface of atrophy-inducing stimuli. Hindlimb suspension and spinal cordtransection were used to induce atrophy, and intermittent reloading andexercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg1 · day1) wasadministered to block calcineurin activity. Soleus muscles were studied14 days after the onset of atrophy. CsA administration did not inhibitthe beneficial effects of the two muscle-maintaining interventions, nordid it change muscle mass in control or atrophied muscles, suggestingthat calcineurin does not play a role in regulating muscle size duringatrophy. However, calcineurin abundance was increased in atrophiedsoleus muscles, and this was associated with nuclear localization ofNFATc1 (a nuclear factor of activated T cells). Therefore, resultssuggest that calcineurin may be playing opposing roles during skeletalmuscle atrophy and under muscle mass-maintaining conditions.

  相似文献   

14.
One of the key factors responsible for the age-associated reduction in muscle mass may be that satellite cell proliferation potential (number of doublings contained within each cell) could become rate limiting to old muscle regrowth. No studies have tested whether repeated cycles of atrophy-regrowth in aged animals deplete the remaining capacity of satellite cells to replicate or what measures can be taken to prevent this from happening. We hypothesized that there would be a pronounced loss of satellite cell proliferative potential in gastrocnemius muscles of aged rats (25- to 30-mo-old FBN rats) subjected to three cycles of atrophy by hindlimb immobilization (plaster casts) with intervening recovery periods. Our results indicated that there was a significant loss in gastrocnemius muscle mass and in the proliferative potential of the resident satellite cells after just one bout of immobilization. Neither the muscle mass nor the satellite cell proliferation potential recovered from their atrophied values after either the first 3-wk or later 9-wk recovery period. Remarkably, application of insulin-like growth factor I onto the atrophied gastrocnemius muscle for an additional 2 wk after this 9-wk recovery period rescued approximately 46% of the lost muscle mass and dramatically increased proliferation potential of the satellite cells from this muscle.  相似文献   

15.
Muscle atrophy is a common complication in chronic kidney disease (CKD). Inflammation and myostatin play important roles in CKD muscle atrophy. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects and the promotion of myogenic differentiation. Our study is based on myostatin to explore the effects and mechanisms of FMN in relation to CKD muscle atrophy. In this study, CKD rats and tumour necrosis factor α (TNF-α)-induced C2C12 myotubes were used for in vivo and in vitro models of muscle atrophy. The results showed that FMN significantly improved the renal function, nutritional status and inflammatory markers in CKD rats. Values for bodyweight, weight of tibialis anterior and gastrocnemius muscles, and cross-sectional area (CSA) of skeletal muscles were significantly larger in the FMN treatment rats. Furthermore, FMN significantly suppressed the expressions of MuRF-1, MAFbx and myostatin in the muscles of CKD rats and the TNF-α-induced C2C12 myotubes. Importantly, FMN significantly increased the phosphorylation of PI3K, Akt, and FoxO3a and the expressions of the myogenic proliferation and differentiation markers, myogenic differentiation factor D (MyoD) and myogenin in muscles of CKD rats and the C2C12 myotubes. Similar results were observed in TNF-α-induced C2C12 myotubes transfected with myostatin-small interfering RNA (si-myostatin). Notably, myostatin overexpression plasmid (myostatin OE) abolished the effect of FMN on the phosphorylation of the PI3K/Akt/FoxO3a pathway and the expressions of MyoD and myogenin. Our findings suggest that FMN ameliorates muscle atrophy related to myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function.  相似文献   

16.
The generation and development of muscle cells in the IVth hindlimb lumbrical muscle of the rat was studied following total or partial denervation. Denervation was carried out by injection of beta-bungarotoxin (beta-BTX), a neurotoxin which binds to and destroys peripheral nerves. Primary myotubes were generated in denervated muscles and reached their normal stable number on embryonic day 17 (E17). This number was not maintained and denervated muscles examined on E19 or E21 contained many degenerating primary myotubes. Embryos injected with beta-bungarotoxin (beta-BTX) on E12 or E13 suffered a partial loss of motoneurones, resulting in a reduced number of axons in the L4 ventral root (the IVth lumbrical muscle is supplied by axons in L4, L5 and L6 ventral roots) and reduced numbers of nerve terminals in the intrinsic muscles of the hindfoot. Twitch tension measurements showed that all myotubes in partly innervated muscles examined on E21 contracted in response to nerve stimulation. Primary myotubes were formed and maintained at normal numbers in muscles with innervation reduced throughout development, but a diminished number of secondary myotubes formed by E21. The latter was correlated with a reduction in number of mononucleate cells within the muscles. If beta-BTX was injected on E18 to denervate muscles after primary myotube formation was complete, E21 embryo muscles contained degenerating primary myotubes. After injection to denervate muscles on E19, the day secondary myotubes begin to form, E21 muscles possessed normal numbers of primary myotubes. In both cases, secondary myotube formation had stopped about 1 day after the injection and the number of mononucleate cells was greatly reduced, indicating that cessation of secondary myotube generation was most probably due to exhaustion of the supply of competent myoblasts. We conclude that nerve terminals regulate the number of secondary myotubes by stimulating mitosis in a nerve-dependent population of myoblasts and that activation of these myoblasts requires the physical presence of nerve terminals as well as activation of contraction in primary myotubes.  相似文献   

17.
The properties of the contractile elements interacting to develop force in atrophied rat soleus muscle were studied by using single skinned fibers, which permitted direct access to the contractile apparatus. Muscle atrophy was induced by 15 days of hindlimb suspension. Suspension resulted in a decrease of maximal tension relative to an important decline in fiber diameter. Ca affinity of the contractile proteins was not changed insofar as the tension-pCa relationship was not shifted along the pCa axis. However, after hindlimb suspension 1) the value of the Hill coefficient from the tension-pCa curve was found to be higher, 2) a higher Ca threshold for activation was reported, and 3) a significant increase in contraction kinetics was described. All these results suggested that after suspension the mechanical properties of the slow-twitch soleus appeared to resemble more closely those of a fast-twitch muscle. Our results were in complete agreement with published histochemical data.  相似文献   

18.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion.  相似文献   

19.
Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atrophy, we used hindlimb‐immobilized mice. Mitochondrial function is optimized by balancing mitochondrial dynamics, and we observed that this balance shifted towards mitochondrial fission and that MuRF1 and atrogin‐1 expression levels were elevated in these mice. We also found that the expression of yeast mitochondrial escape 1‐like ATPase (Yme1L), a mitochondrial AAA protease was significantly reduced both in hindlimb‐immobilized mice and carbonyl cyanide m‐chlorophenylhydrazone (CCCP)‐treated C2C12 myotubes. When Yme1L was depleted in myotubes, the short form of optic atrophy 1 (Opa1) accumulated, leading to mitochondrial fragmentation. Moreover, a loss of Yme1L, but not of LonP1, activated AMPK and FoxO3a and concomitantly increased MuRF1 in C2C12 myotubes. Intriguingly, the expression of myostatin, a myokine responsible for muscle protein degradation, was significantly increased by the transient knock‐down of Yme1L. Taken together, our results suggest that a deficiency in Yme1L and the consequential imbalance in mitochondrial dynamics result in the activation of FoxO3a and myostatin, which contribute to the pathological state of muscle atrophy.  相似文献   

20.
Age-associated decrease in muscle precursor cell differentiation   总被引:2,自引:0,他引:2  
Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27Kip1 is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27Kip1 protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. satellite cells; skeletal muscle; p27Kip1; myogenic regulatory factors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号