首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some compounds naturally present in food (quercetin, beta-naphthoflavone), used as food additives (butylated hydroxytoluene, sodium sulfite) or resulting from the way they were cooked (2-aminodipyrido [1,2-a; 3', 2'-d] imidazole, norharmane) can interfere with AFB1 metabolism. These interferences have been studied in vitro by evaluating the production of adducts to glutathione and by the Ames test on Salmonella typhimurium. Whereas all compounds produced a drastic decrease of the mutagenic activity, the first three only (quercetin, beta-naphthoflavone, butylated hydroxytoluene) interfered with the production of the adducts to glutathione.  相似文献   

2.
In order to study the possible detoxification mechanisms of the carcinogenic arylamine, 2-amino-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (Glu-P-1), the in vitro non-enzymatic reaction of 2-nitroso-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (NO-Glu-P-1) with reduced glutathione (GSH) was examined at pH 7.4 under both aerobic and anaerobic conditions. Two GSH-arylamine adducts were isolated and found to contain the Glu-P-1 and GSH moieties in a 1:1 molar ratio via an N-S linkage. Their structures were assigned as sulfinamide (-NH-SO-) and N-hydroxy-sulfonamide (-N(OH)-SO2-) by their behaviour under acidic and basic conditions and by UV-VIS, 1H-NMR, infrared and mass spectrometries. Also, a N-hydroxy-sulfonamide adduct was produced when NO-Glu-P-1 and cysteine were reacted at pH 7.4. The N-hydroxy-sulfonamide structure is a new binding form between arylnitroso compounds and thiols. The formation of these adducts may also take place in vivo as a detoxification of toxic arylamines since GSH is abundant in organs such as liver or kidney.  相似文献   

3.
The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50–60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32–39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50–60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT–QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of this study provide additional insight into mechanisms of BHT-induced oxidative damage and further support a link between inflammation and tumor promotion in mouse lung.  相似文献   

4.
Most heterocyclic amines formed during the cooking of meat and fish have been shown to form adducts in the livers of rats. Recently, however, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), administered in the diet to Fischer 344 (F344) rats for 4 weeks, was shown to produce the highest levels of adducts in the heart. In the present study 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-6-methyldipyrido[1,2-a:1',2'-d]imidazole (Glu-P-1) were given to F344 rats at carcinogenic dose levels (IQ 0.03%, MeIQx 0.04%, Trp-P-1 0.015%, Glu-P-1 0.05%) in the diet for 4 weeks. DNA adducts in the liver and heart were analyzed by 32P-postlabeling. DNA adducts were demonstrated to appear in the hearts of all animals exposed to heterocyclic amines at the following levels: IQ, 1.8 adducts/10(7) nucleotides, MeIQx, 3.8/10(7) ntd, Trp-P-1, 20/10(7) ntd and Glu-P-1, 7.2/10(7) ntd. Values for the heart were 10-20% of the respective liver adduct levels. Heart adducts increased linearly throughout the observed period when MeIQx was administered for up to 40 weeks. When MeIQx feeding was discontinued after 20 weeks and the animals subsequently given the basal diet, the adduct level at 20 weeks did not change during the following 20 weeks. A possible role for heart DNA alterations caused by food-borne heterocyclic amines in the development of age-related myopathies and cardiovascular disease is not inconceivable.  相似文献   

5.
1. Phenol compounds (ellagic acid, quercetin and purpurogallin), glutathione analogues (S-hexylglutathione and S-octylglutathione) and a diuretic drug (ethacrynic acid) were compared for their inhibitory effects on glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) in the canine erythrocytes. 2. All these compounds inhibited GST activity; quercetin was found to be the most potent inhibitor. 3. Ellagic acid, purpurogallin, quercetin and ethacrynic acid inhibited GR activity; S-hexylglutathione and S-octylglutathione had no effect on GR and GSH-Px activities. 4. Quercetin and purpurogallin inhibited GST non-competitively toward glutathione, whereas ellagic acid showed a competitive inhibition. Ellagic acid and purpurogallin inhibited GR non-competitively toward oxidized glutathione.  相似文献   

6.
Lesion formation due to oral administration of absolute ethanol could be prevented by parenteral pretreatment with antiperoxidative drugs such as butylated hydroxytoluene (BHT), quercetin and quinacrine. Also effective were allopurinol and oxypurinol, inhibitors of xanthine oxidase, but not superoxide dismutase (SOD) and hydroxyl radical scavengers, such as sodium benzoate and dimethyl sulfoxide (DMSO). BHT, quercetin, quinacrine and sulfhydryl compounds such as reduced glutathione and cysteamine which offer gastroprotection in vivo against ethanol inhibited lipid peroxidation induced in vitro by ferrous ion in porcine gastric mucosal homogenate, but SOD, sodium benzoate, DMSO, allopurinol and oxypurinol did not. These results suggest the possibility that an active species, probably derived from free iron mobilized by the xanthine oxidase system, other than oxygen radicals such as hydroxyl radicals, contributes to lipid peroxidation and lesion formation in the gastric mucosa after absolute ethanol administration.  相似文献   

7.
The effect of quercetin on the mutagenicity of 32 kinds of aromatic amines and their acetamides were investigated using Salmonella typhimurium TA98 with a mammalian metabolic activation system (S9 mix). Quercetin enhanced the mutagenicity of the tricyclic aromatic amines (aminofluorene, aminoanthracene and aminophenanthrene) and their acetamides by 1.2-5.9-fold. Whereas, quercetin depressed the mutagenicity of aniline derivatives, biphenyl derivatives, and bi- and tetra-cyclic amino derivatives. The modulation of mutagenicity of Trp-P-1, Trp-P-2, Glu-P-1 and Glu-P-2 (heterocyclic amines) by quercetin were liable to be affected by the content of S9 in the S9 mix. It seems that quercetin does not have the same effect as norharman, because quercetin did not enhance the mutagenicity of aniline. It is suggested that the modulation of the mutagenicity of aromatic amines and acetamides is caused by the modulation of the balance between the mutagenic activation and inactivation in the metabolism of these amines and acetamides in the presence of quercetin. In this modulation, quercetin may participate through its effects on the promotion of N-hydroxylation and the inhibition of arylhydroxylation and transacylation. The presence of tricyclic aromatic rings of amines and acetamides is a structural requirement for the mutagenicity enhancement by quercetin.  相似文献   

8.
Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.  相似文献   

9.
Antioxidant properties of di-tert-butylhydroxylated flavonoids   总被引:5,自引:0,他引:5  
Epidemiological evidence suggests an inverse relationship between dietary intake of flavonoids and cardiovascular risk. The biological activities of flavonoids are related to their antioxidative effects, but they also can be mutagenic, due to the prooxidant activity of the catechol pattern. To prevent these problems, we synthesized new flavonoids where one or two di-tert-butylhydroxyphenyl (DBHP) groups replaced catechol moiety at position 2 of the benzopyrane heterocycle. Two DBHP moieties can also be arranged in an arylidene structure or one DBHP fixed on a chalcone structure. Position 7 on the flavone and arylidene or position 4 on the chalcone was substituted by H, OCH(3), or OH. New structures were compared with quercetin and BHT in an LDL oxidation system induced by Cu(II) ions. Arylidenes and chalcones had the best activities (ED(50) = 0.86 and 0.21) compared with vitamin E, BHT, and quercetin (ED(50) = 10.0, 7. 4, and 2.3 microM). Activity towards stable free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) was measured by log Z and ECR(50) parameters. Synthesized flavones proved to be poor DPPH radical scavengers, the activity increasing with the number of DBHP units. In contrast, arylidenes and chalcones were stronger DPPH radical scavengers (log Z > 3, 0.3 < ECR(50) < 2.12) than BHT (log Z = 0.75, ECR(50) = 12.56) or quercetin (log Z = 2.76, ECR(50) = 0.43). Unlike quercetin, synthesized compounds neither chelated nor reduced copper, proving that these new flavonoids had no prooxidant activity in vitro.  相似文献   

10.
Different antioxidants and free radical scavengers on aflatoxin production are analysed. The different compounds at different concentration were used: buthylated hydroxyanisole (BHA), buthylated hydroxytoluene (BHT), α-tocopherol (vitamin E), ascorbic acid (vitamin C), reduced glutathione, cysteine, cysteamine. The above compounds were tested in culture ofAspergillus parasiticus supplemented with carbon tetrachloride, a potent stimulating agent of aflatoxin biosynthesis. Cysteamine and BHA highly inhibited the aflatoxin production induced by carbon tetrachloride, the inhibition decreased by lowering the concentration. On the contrary, vitamin E, vitamin C, reduced glutathione and cysteine further enhanced the carbon tetrachloride stimulating effect. The addition of the above compounds did not significantly affect the growth of the fungal mycelia.  相似文献   

11.
Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH)(2)), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.  相似文献   

12.
Metabolic activation by cytochrome P-450 of glutamic acid pyrolysis products, 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-amino-dipyrido(1,2,-a:3',2'-d)imidazole (Glu-P-2), to mutagenic metabolites was studied using Salmonella typhimurium TA98 as a tester strain. Cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH were essential requirements for the activation of these compounds. Of the four forms of cytochrome P-450 examined, polychlorinated biphenyls (PCB) P-448 and 3-methylcholanthrene (MC) P-448 purified from liver microsomes of rats treated with a PCB mixture and MC, respectively, showed high activity in the activation of both Glu-P-1 and Glu-P-2. The presence of three metabolites from Glu-P-1 or Glu-P-2 was demonstrated by high performance liquid chromatographic (HPLC) analysis. Among the metabolites of Glu-P-1, two metabolites were mutagenic without any further enzymatic activation. In accordance with the results of a mutation assay, PCB P-448 also exhibited higher activity to form the major mutagenic metabolite of Glu-P-1. The major active metabolite of Glu-P-1 was characterized as N-hydroxy-Glu-P-1 by chemical analysis using oxidizing and reducing reagents and by mass spectrometry.  相似文献   

13.
Naphthalene is metabolized in the lung and liver to reactive intermediates by cytochrome P450 enzymes. These reactive species deplete glutathione, covalently bind to proteins, and cause necrosis in Clara cells of the lung. The importance of glutathione loss in naphthalene toxicity was investigated by using the glutathione prodrugs (glutathione monoethylester or cysteine-glutathione mixed disulfide) to maintain glutathione pools during naphthalene exposure. Mice given a single intraperitoneal injection of naphthalene (1.5 mmol/kg) were treated with either prodrug (2.5 mmol/kg) 30 min later. Both compounds effectively maintained glutathione levels and decreased naphthalene-protein adducts in the lung and liver. However, cysteine-glutathione mixed disulfide was more effective at preventing Clara cell injury. To study the prodrugs in Clara cells without the influence of hepatic naphthalene metabolism and circulating glutathione, dose-response and time-course studies were conducted with intrapulmonary airway explant cultures. Only the ester of glutathione raised GSH in vitro; however, both compounds limited protein adducts and cell necrosis. In vitro protection was not associated with decreased naphthalene metabolism. We conclude that (1) glutathione prodrugs can prevent naphthalene toxicity in Clara cells, (2) the prodrugs effectively prevent glutathione loss in vivo, and (3) cysteine-glutathione mixed disulfide prevents naphthalene injury in vitro without raising glutathione levels.  相似文献   

14.
The metabolism, covalent binding and hepatotoxicity of butylated hydroxytoluene (BHT, 4-methyl-2,6-di-t-butylphenol) and two congeners (E-BHT, 4-ethyl-2,6-di-t-butylphenol; I-BHT, 4-isopropyl-2,6-di-t-butylphenol) were compared using precision-cut liver slices prepared from phenobarbital (PB)-treated male Sprague-Dawley rats. At equimolar concentrations (1 mM) BHT was the most toxic of the three compounds, causing an 80% decrease in cell viability over a 6 h incubation period. E-BHT was intermediate in toxicity while the isopropyl derivative was relatively nontoxic. Intracellular glutathione levels decreased prior to the onset of cytotoxicity. The cytochrome P450 inhibitor metyrapone completely inhibited the toxicity of all three compounds. The rates of metabolism of the three compounds to glutathione conjugates were compared in both PB-treated microsomes and PB-induced liver slices. In both models, the rate of formation was greatest for BHT, followed by E-BHT and I-BHT. Synthetic quinone methides (QMs) were prepared from each parent phenol and the rates of reactivity with three nucleophiles (water, methanol and glutathione) were compared. With each nucleophile, BHTQM was the most reactive, while I-BHTQM was the least reactive. Finally, covalent binding to protein was assessed in two ways. First, alkylation of an isolated model protein (bovine insulin) was measured in a microsomal enzyme activation system by mass spectrometry. Incubations with BHT produced the greatest extent of protein alkylation, followed by E-BHT, while no alkylation was observed with I-BHT. In the second system, covalent binding to cellular protein was assessed in rat liver PB microsomes and tissue slices by Western blotting using an antibody specific for the tert-butylphenol portion of the compounds. Binding was greatest for BHT, intermediate for E-BHT and could not be detected for I-BHT. The alkylation pattern for E-BHT was strikingly similar to that of BHT, suggesting that both compounds bound similar proteins. In summary, our results suggest that for hindered phenols such as BHT, increasing the length of the 4-alkyl substituent retards the rate of formation of reactive intermediates, significantly reduces the electrophilicity of the reactive intermediate, and greatly reduces the amount but not the selectivity of covalent binding to cellular protein, thereby reducing the toxicity of the parent compound.  相似文献   

15.
The oxidation of quercetin by horseradish peroxidase/H(2)O(2) was studied in the absence but especially also in the presence of glutathione (GSH). HPLC analysis of the reaction products formed in the absence of GSH revealed formation of at least 20 different products, a result in line with other studies reporting the peroxidase-mediated oxidation of flavonoids. In the presence of GSH, however, these products were no longer observed and formation of two major new products was detected. (1)H NMR identified these two products as 6-glutathionylquercetin and 8-glutathionylquercetin, representing glutathione adducts originating from glutathione conjugation at the A ring instead of at the B ring of quercetin. Glutathione addition at positions 6 and 8 of the A ring can best be explained by taking into consideration a further oxidation of the quercetin semiquinone, initially formed by the HRP-mediated one-electron oxidation, to give the o-quinone, followed by the isomerization of the o-quinone to its p-quinone methide isomer. All together, the results of the present study provide evidence for a reaction chemistry of quercetin semiquinones with horseradish peroxidase/H(2)O(2) and GSH ultimately leading to adduct formation instead of to preferential GSH-mediated chemical reduction to regenerate the parent flavonoid.  相似文献   

16.
Effects of caffeic acid and chlorogenic acid on mutagenicity were studied using the Salmonella typhimurium system. These compounds had inhibitory effects on the mutagenicity of Trp-P-1 and Glu-P-2. Caffeic acid completely eliminated the mutagenicity induced by activated Glu-P-2. Some compounds analogous to caffeic acid, such as cinnamic acid, coumaric acid, and ferulic acid, also significantly decreased the mutagenicity of Glu-P-2.  相似文献   

17.
The plant-specific phi class of glutathione transferases (GSTFs) are often highly stress-inducible and expressed in a tissue-specific manner, suggestive of them having important protective roles. To date, these functions remain largely unknown, although activities associated with the binding and transport of reactive metabolites have been proposed. Using a sensitive and selective binding screen, we have probed the Arabidopsis thaliana GSTFs for natural product ligands from bacteria and plants. Uniquely, when overexpressed in bacteria, family members GSTF2 and GSTF3 bound a series of heterocyclic compounds, including lumichrome, harmane, norharmane and indole-3-aldehyde. When screened against total metabolite extracts from A. thaliana, GSTF2 also selectively bound the indole-derived phytoalexin camalexin, as well as the flavonol quercetin-3-O-rhamnoside. In each case, isothermal titration calorimetry revealed high-affinity binding (typically Kd<1 μM), which was enhanced in the presence of glutathione and by the other heterocyclic ligands. With GSTF2, these secondary ligand associations resulted in an allosteric enhancement in glutathione-conjugating activity. Together with the known stress responsiveness of GSTF2 and its association with membrane vesicles, these results are suggestive of roles in regulating the binding and transport of defence-related compounds in planta.  相似文献   

18.
Rats were pretreated with a single oral dose of different mutagenic fractions obtained from glutamic acid pyrolysate: Glu-P-2 (2-amino-dipyrido[1,2-a:3',2'-d]imidazole), Glu-P-3 (3-amino-4,6-dimethyldipyrido[1,2-a:3',2'-d]imidazole), the tar residue and a basic extract (B2). The liver S9 fractions of these animals were used to investigate the mutagenic activation of 3 promutagens (2-aminoanthracene, Glu-P-2 and Glu-P-3) in Salmonella typhimurium strain TA1538. Different factors were analyzed; influence of the structure of the compounds administered, doses, time interval between pretreatment and sacrifice and sex of the rats. Interpretation of the hepatic induction effects was complicated, however, by the fact that simple oral pretreatment with the solvents (DMSO or ethanol) enhances the activation of the substrates tested for mutagenicity. A dose-effect relationship was found between 2-AA mutagenic activation and Glu-P-2 pretreatment. Glu-P-3 induced the activation of 2-AA more than did Glu-P-2, in the male as in the female. The mutagenicity of 2-AA activated with S9 from male rats was found to be optimal after 24 h pretreatment with 20 mg Glu-P-2/kg b.w. The mutagenicity of Glu-P-2 was poorly influenced by the different pretreatments applied to either the males or the females, whereas some dose effect was found in the autoinduction of Glu-P-2 mutagenicity. Compared to Glu-P-2, the mutagenicity of Glu-P-3 was increased at higher levels when tested with S9 from males pretreated with the same compound, but no differences were observed between males and females.  相似文献   

19.
There have been increasing reports on the adverse reactions associated with herbal consumption. For many of these adverse reactions, the underlying biochemical mechanisms are unknown, but bioactivation of herbal compounds to generate reactive intermediates have been implicated. This minireview updates our knowledge on metabolic activation of herbal compounds, molecular targets and the toxicity relevance. A number of studies have documented that some herbal compounds can be converted to toxic or even carcinogenic metabolites by Phase I [e.g. cytochrome P450s (CYPs)] and less frequently by Phase II enzymes. For example, aristolochic acids (AAs) in Aristolochia spp, which undergo reduction of the nitro group by hepatic CYP1A1/2 or peroxidases in extrahepatic tissues to generate highly reactive cyclic nitrenium ions. The latter can react with macromolecules (DNA and protein), resulting in activation of H-ras and myc oncogenes and gene mutation in renal cells and finally carcinogenesis of the kidneys. Teucrin A and teuchamaedryn A, two diterpenoids found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming herbal supplements that caused severe hepatotoxicity, are converted by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase and inactivate them. Some naturally occurring alkenylbenzenes (e.g. safrole, methyleugenol and estragole) and flavonoids (e.g. quercetin) can undergo bioactivation by sequential 1-hydroxylation and sulfation, resulting in reactive intermediates capable of forming DNA adducts. Extensive pulegone metabolism generated p-cresol that is a glutathione depletory. The hepatotoxicity of kava is possibly due to intracellular glutathione depletion and/or quinone formation. Moreover, several herbal compounds including capsaicin from chili peppers, dially sulfone in garlic, methysticin and dihydromethysticin in kava, oleuropein in olive oil, and resveratrol found in grape seeds are mechanism-based (suicide) inhibitors of various CYPs. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated systems toxicological approach may provide deep insights into mechanistic aspects of herb-induced toxicities, and contribute to bridging the relationships between herbal bioactivation, protein/DNA adduct formation and the toxicological consequences.  相似文献   

20.
Jiang ZQ  Chen C  Yang B  Hebbar V  Kong AN 《Life sciences》2003,72(20):2243-2253
Cell-based models have been used extensively in screening novel bioactive chemical entities. In this study, seven well-established mammalian cell lines, which have different origins, were utilized to compare their responses to the treatments of three detoxifying enzyme inducers, tert-butylhydroquinone (tBHQ), beta-naphthoflavone (beta-NF), and sulforaphane (SUL), which are potential chemopreventive compounds. The enzymatic activities of glutathione s-transferase (GST), NAD(P)H:quinone oxidoreductase (QR), aldehyde reductase (AR), and glutathione reductase (GR) were measured by kinetics methods using UV-Vis spectroscopy, and analyzed statistically by Student's t-test. Among these mammalian cell lines, the mouse hepatoma Hepa1c1c7 cells were the most robust and sensitive cells, which had higher basal as well as upregulated enzymatic activities. In human cell lines, the prostate LNCaP and hepatic HepG2 cells were also very responsive to the inducers. The results suggested that different cell lines responded differently to individual detoxifying gene inducer, and the selection of appropriate cell line is important for screening potential chemopreventive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号