首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrangement of wall microtubules (MTs) in Pisum sativumroots was viewed immunofluorescently using cryosectioning. Mostcells in the tip region of pea roots (0–2 mm from tip)had wall MTs arranged transversely to the root axis. In theregion elongating at a higher rate (2–4 mm), wall MTsof epidermal, cortical and stelar cells were all transverselyarranged. In the region of about 5 mm from the tip, in whichcell elongation had already ceased, wall MTs in cortical cellschanged from a transverse to an oblique arrangement in relationto the root axis. Some cells had a crossed arrangement of wallMTs, which was interpreted as representing two sets of unidirectional,oblique wall MTs in opposite cell cortices of a single cell.This change was completed within a region of 1-mm width. Sinceroots elongated at a rate of 0.6 mm h–1, it means thatthe arrangement of wall MTs changed within 2 h. An oblique arrangementof wall MTs was also observed in stelar cells. As the cellsaged, the oblique arrangement tended to change to a steeperor even a longitudinal one. (Received January 24, 1986; Accepted May 15, 1986)  相似文献   

2.
Kazuo Takeda  Hiroh Shibaoka 《Planta》1981,151(4):385-392
Throughout the entire period of cell growth, the microfibrils on the inner surface of the outer tangential walls of the epidermal cells of Vigna angularis epicotyls are running parallel to one another and their orientation differs from cell to cell. Although transverse, oblique and longitudinal microfibrils can be observed irrespective of cell age, the frequency distribution of microfibril orientation changes with age. In young cells, transversely oriented microfibrils predominate. In cells of medium age, which are still undergoing elongation, transverse, oblique and longitudinal microfibrils are present in quite similar frequencies. In old, non-growing cells, longitudinally oriented microfibrils are predominent. A decrease in the relative frequency of transversely oriented microfibrils with cell age was also observed in the radial epidermal walls.  相似文献   

3.
Microfibrillar structure, cortical microtubule orientation andthe effect of amiprophos-methyl (APM) on the arrangement ofthe most recently deposited cellulose microfibrils were investigatedin the marine filamentous green alga, Chamaedoris orientalis.The thallus cells of Chamaedoris showed typical tip growth.The orientation of microfibrils in the thick cell wall showedorderly change in longitudinal, transverse and oblique directionsin a polar dependent manner. Microtubules run parallel to thelongitudinally arranged microfibrils in the innermost layerof the wall but they are never parallel to either transverseor obliquely arranged microfibrils. The ordered change in microfibrilorientation is altered by the disruption of the microtubuleswith APM. The walls, deposited in the absence of the microtubules,showed typical helicoidal pattern. However, the original crossedpolylamellate pattern was restored by the removal of APM. Thissuggests that cortical microtubules in this alga do not controlthe direction of microfibril orientation but control the orderedchange of microfibril orientation. Amiprophos-methyl, Chamaedoris orientalis, coenocytic green alga, cortical microtubule, microfibrillar structure, tip growth  相似文献   

4.
Polarotropism was induced inAdiantum (fern) protonemata grown under polarized red light by turning the electrical vector 45 or 70 degrees. One hour after the light treatment, tropic responses became apparent in many cells as a slight distortion of the apical dome. Changes in the position of the circumferentially-arranged cortical microtubule band (Mt-band) (Murataet al., 1987) and the arrangement of microfibrils around the subapical part of protonemata were investigated in relation to the polarotropic responses. Twenty minutes after turning the electrical vector, preceding the morphological change of cell shape, the Mt-band began to change its orientation from perpendicular to oblique to the initial growing axis. After 30 min, the Mt-band changed its orientation further under 45 degrees polarized light, but under light rotated 70 degrees, it began to disappear. In phototropic responses induced by local irradiation of a side of the subapical part of a protonema with a non-polarized red microbeam, the Mt-band on the irradiated side disappeared or became faint within 20 min, but neither disappearance nor a change of orientation of Mts occurred on the non-irradiated side. One hour after turning the electrical vector 45 degrees, in half of the cells tested, the innermost layer of microfibrils in the subapical part of the protonema changed its orientation from perpendicular to oblique to the growing axis, corresponding to the changes in the orientation of the Mt-band. After 2 hr, those changes were obvious in all cells examined. The same basic results on the orientation of microfibrils were obtained with protonemata cultured for 2 hr under 70 degrees polarized light. The role of the Mt-band in tropic responses is discussed.  相似文献   

5.
H. J. Pluymaekers 《Protoplasma》1982,112(1-2):107-116
Summary The cell wall of root hairs ofLimnobium stoloniferum is composed of two fibrillar layers: an outer layer with a dispersed texture and an inner layer with a helicoidal texture. In stained oblique sections the helicoidal layer appears as a series of bow-shaped structures. In sections which were shadow-casted after the embedding medium was removed, the following properties of the helicoidal layer can be directly observed. (1) It is build up of superimposed lamellae. (2) Each lamella consists of parallel oriented microfibrils. (3) Going into the helicoidal layer, there is a counter-clockwise discontinuous rotation of the microfibril orientation in successive lamellae. (4) Between adjacent lamellae the average angular displacement of the microfibril orientation is about 23 degrees. The dispersed outer layer is also polylamellated, but with randomly arranged microfibrils in each lamella. Both layers are present in the lateral wall as well as in the apical wall of the root hairs. Observations indicate that in the cell wall of the tip the parallel oriented microfibrils of the outermost helicoidal lamellae become distorted towards a dispersed arrangement. The suggestion is made that the dispersed outer layer is derived from the helicoidal layer.  相似文献   

6.
Summary Cellulose microfibrils (MFs) were visualized on the inner surface of root cortex cell walls ofHyacinthus orientalis L. using a replica technique. Microfibril orientation was determined in radial longitudinal and transverse cell walls of the root tip, uncontracted, contracting, and fully contracted regions of the root. In longitudinal walls, the innermost MFs were ordered and parallel to one another and were oriented transversely, axially or obliquely, depending upon the developmental stage of the region. In transverse walls MFs in a single layer formed crisscross or ordered parallel arrays, depending upon the region. Parallel arrays were oriented either parallel, perpendicular, or oblique to the radius of the root. Inner walls of certain cells in the contracting region had MFs which appeared interrupted over their lengths. In general, these findings parallel earlier immunofluorescence and electron microscopic observations of changing cortical microtubule (MT) orientation accompanying root contraction. The major exception to MT-MF congruence occurred in cells of the actively contracting region. In middle and outer cell layers, MFs appeared short and partially obscured, while MTs in these cells occurred in conspicuous laterally aggregated strands parallel to one another over the length of the cells or were absent. This alteration in MF-MT parallelism may be related to the reorientation in cell growth occurring in the contractile zone or to the collapse of specific cells during the process of root contraction.Abbreviations MF microfibril - MT microtubule  相似文献   

7.
Three types of microfibrillar orientation, namely parallel, perpendicular and oblique to the main cell axis were found not only in the innermost surface of but also throughout the developing wall. Furthermore, three types of microtubule orientation, namely parallel, perpendicular and oblique to the main cell axis, were found, coinciding with those of microfibrils. As a whole, the wall was shown to be a crossed polylamellate structure. These observations suggest that the orientation of microfibrils is determined at the time of wall formation, and not influenced by the extension of the wall.  相似文献   

8.
Production of Cellulose Microfibrils by Rhizobium   总被引:23,自引:9,他引:14       下载免费PDF全文
Electron microscope examination of Rhizobium spp. revealed microfibrils produced by flocculating strains but not by nonflocculating strains. The microfibrils from R. trifolii (NA30) were isolated and identified as cellulose by enzymatic, X-ray diffraction, and infrared spectral analyses. Both infective and noninfective strains of R. trifolii flocculated and produced microfibrils. More infection threads were observed in clover root hairs growing in the presence of flocs in comparison with root hairs where single bacterial cells predominated.  相似文献   

9.
The fine structure of young root hairs of radish was studied, with special attention to cytoplasm-wall relationships. Hairs up to 130 µ in length were examined after fixation of root tips in glutaraldehyde followed by osmium tetroxide. Microtubules occur axially aligned in the cytoplasm just beneath the plasmalemma, and extend from the base of the hair to within 2 to 3 µ of the tip. Poststaining with uranyl acetate and lead citrate clearly reveals in thin sections the presence of the two layers of cellulose microfibrils known from studies on shadowed wall preparations: an outer layer of randomly arranged microfibrils arising at the tip, and a layer of axially oriented microfibrils deposited on the inside of this layer along the sides. The youngest microfibrils of the inner, oriented layer first appear at a distance of about 25 µ from the tip. Although the microfibrils of the inner layer and the adjacent microtubules are similarly oriented, the oriented microtubules also extend through the 20- to 25-µ zone near the tip where the wall structure consists of random microfibrils. This suggests that the role of microtubules in wall deposition or orientation may be indirect.  相似文献   

10.
Werner Herth 《Planta》1983,159(4):347-356
The cell-wall structure and plasma-membrane particle arrangement during cell wall formation of the filamentous chlorophycean alga Spirogyra sp. was investigated with the freeze-fracture technique. The cell wall consists of a thick outer slime layer and a multilayered inner wall with ribbon-like microfibrils. This inner wall shows three differing orientations of microfibrils: random orientation on its outside, followed by axial bundles of parallel microfibrils, and several internal layers of bands of mostly five to six parallel associated microfibrils with transverse to oblique orientation. The extraplasmatic fracture face of the plasma membrane shows microfibril imprints, relatively few particles, and “terminal complexes” arranged in a hexagonal package at the end of the imprint of a microfibril band. The plasmatic fracture face of the plasma membrane is rich in particles. In places, it reveals hexagonal arrays of “rosettes”. These rosettes are best demonstrable with the double-replica technique. These findings on rosette arrays of the zygnematacean alga Spirogyra are compared in detail with the published data on the desmidiacean algae Micrasterias and Closterium.  相似文献   

11.
R. L. Peterson 《Plant biosystems》2013,147(6):1145-1152
Abstract

Ectomycorrhizas are subterranean organs resulting from the alteration in root structure by soil-inhabiting symbiotic fungi. Hyphae of the mycobiont have to contact the root surface, become attached to the root, and subsequently enter the root by growing between epidermal cells (and in some species, cortical cells) to form the Hartig net. A chemotropic stimulus might be involved in early hypha-root contact and recognition-adhesion may involve a polysaccharide-lectin interaction, but further research is needed to confirm this. Fungal hyphae adhering to the root surface change their mode of growth from apical, extension growth to a loss of this pattern resulting in a multi-branched mycelium. A similar change in pattern of branching occurs as hyphae form the Hartig net. In both cases, a change in the cytoskeleton might precede the change in branching. The ingress of hyphae between epidermal cells in angiosperm roots triggers radial rather than axial elongation of these cells; a reorientation of the cytoskeleton and subsequently the cellulose microfibrils is hypothesized to be involved in this process. Wall changes in root cells contiguous to Hartig net hyphae also occur, and these might facilitate nutrient exchange between the symbionts.  相似文献   

12.
The fine structure of lignin deposition was examined in developing secondary walls of wound vessel members in Coleus. KMnO4, which was used as the fixative, selectively reacts with the lignin component of the cell wall and thus can be used as a highly sensitive electron stain to follow the course of lignification during secondary wall deposition. Lignin was first detected as conspicuuos electron-opaque granules in the primary wall in the region where the secondary wall thickening arises and as fine granular striations extending into the very young secondary wall. As the secondary wall develops lignification becomes progressively more extensive. In cross sections the lignified secondary wall appears as concentric, fine granular striations; in tangent al or oblique sections it is seen as delicate, beaded fibrils paralleling the long axis of the thickening. High magnification of tangential or oblique sections shows that the fibrillar appearance is due to the presence of alternating light and dark layers each approximately 25-35 A wide. It is assumed that the light layers are the cellulose microfibrils and the dark regions contain lignin which fills the space between the microfibrils. KMnO4, by selectively reacting with lignin, thus negatively stains the cellulose microfibrils revealing their orientation and dimensions.  相似文献   

13.
According to Roelofsen and Houwink's (1953, Acta Bot. Neerl. 2, 218–225) multinet growth hypothesis, microfibrils originally deposited transversely in the cell wall become gradually reoriented towards more axial orientations during cell elongation. To establish the extent of reorientation, microfibrils were studied during their deposition and elongation, using stylar parenchyma and transmitting tissue cells of Petunia hybrida L. At the inner surface of very young cells, microfibrils were deposited in alternating Z- and S-helical orientations. The following sequence in deposition, from the exterior to the interior side of the wall, could be inferred: Axial: 150°–180° (Z-helical), 0°–30° (S-helical); oblique: 110°–150° (Z-helical), 30°–70° (S-helical); transverse: 90°–110° (Z-helical), 70°–90° (S-helical). With the increasing pitch, the density of the deposited microfibrils increased as well, giving rise to an alternating helical texture. During elongation, only transversely S- and Z-helically oriented microfibrils were deposited and all microfibrils underwent a certain reorientation as described in the multinet growth hypothesis. The texture resembled that of young cells and the wall maintained its thickness. The extent of passive reorientation was in agreement with the theoretical calculations made by Preston.Dedicated to Professor Dr. A.B. Wardrop, Melbourne, on the occasion of his 70th birthday  相似文献   

14.
The fine structure of the organic matrix of the shore crab cuticle (Carcinus maenas L.), observed in transmission electron microscopy, reveals three different levels of organization of the chitin—protein complex. The highest level corresponds to the ‘twisted plywood’ organization described by Bouligand (1972). Horizontal microfibrils, parallel to the cuticle plane, rotate progressively from one level to another. When viewed in oblique section this structure gives superimposed series of nested arcs, visible in light microscopy or at the lowest magnifications of the electron microscope, in all the chitin-protein layers. At the highest magnifications of the electron microscope and with the best resolution, when the ultrathin sections are exactly transverse to the microfibril, a constant pattern can be observed which consists of rods transparent to electrons, which are embedded in an electron-opaque matrix. In cross-section, these rods often form more or less hexagonal arrays. We call a microfibril one rod and the adjacent opaque material, and question the usual interpretation of the microfibril molecular structure. Between these two levels of organization, there is an intermediate level, which corresponds to the grouping of microfibrils. Microfibrils form a dense structure, with few free spaces in the membranous layer, the deepest and non-calcified layer of the cuticle. In other parts of the cuticle, microfibrils are grouped into fibrils of various diameters or form a reticulate structure, the free spaces of the organic matrix being occupied by the mineral.  相似文献   

15.
Dawes , Clinton J., and Edwin Bowler . (U. of California, Los Angeles.) Light and electron microscope studies of the cell wall structure of the root hairs of Raphanus sativus. Amer. Jour. Bot. 46(8): 561–565. Illus. 1959.—The structure and development of the cell wall of the root hair of Raphanus sativus were studied under the light and electron microscopes. The outer layer of the root hair consists of mucilage which covers the entire hair and forms a thick cap at the tip. Beneath the mucilage a thin cuticle covers the inner layers of the cell wall. These layers consist of cellulose microfibrils, varying in pattern, in a granular matrix, presumably pectic in nature. The microfibrils of the outer layer, apparently laid down at the tip, are reticulate in arrangement. In mature regions of the root hair, the wall is thickened by an inner layer of parallel and longitudinally orientated microfibrils. Pores in the cellulose wall are evident and increase in number and size near the base of the hair.  相似文献   

16.
Summary The thickened sieve cell wall of white pine is shown to comprise a crossed-helical polylamellate structure in which the predominant microfibrillar orientation is greater than 45° with respect to the cell axis. The previously reported observation that microfibrils may be oriented other than parallel to the plane of the cell wall is disputed and it is demonstrated that such an appearance may derive from appropriately oblique sectioning of the wall.  相似文献   

17.
Rearrangement of cellulose microfibrils within cell-wall matrices is considered one of the most critical steps in the regulation of both the orientation and extent of cell expansion in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of load-bearing cross links among cellulose microfibrils. The Arabidopsis thaliana XTH genes AtXTH17, 18, 19, and 20 are phylogenetically closely related to one another and are preferentially expressed in the roots. However, they exhibit different expression profiles within the root and respond to hormonal signals differently. To investigate their functions in root growth, we examined phenotypes of loss-of-function mutants for these genes using T-DNA insertion lines and RNAi plants. These functional analyses disclosed a principal role for the AtXTH18 gene in primary root elongation. Of the four XTH genes, AtXTH18 exhibits the highest level of mRNA expression. We also determined auxin-signaling pathways for these genes using a mutant with a defect in the AXR2/IAA7 gene and found that the expression of AtXTH19 in the elongation/maturation region of the root is under the control of the AXR2/IAA7 signaling pathway.  相似文献   

18.
The microfibrils of connective tissue: I. Ultrastructure   总被引:2,自引:0,他引:2  
The ultrastructure of connective tissue microfibrils was examined in two sites: the ciliary zonule of the eye and the foot pad, in 20-day-old mice perfused with glutaraldehyde. The microfibrils were classified into two categories, referred to as typical and atypical. Typical microfibrils predominate in both sites; they are unbranched, straight or gently curving, tubular structures of indefinite length with an overall diameter of 12.8 +/- 1.7 nm in the zonule and 13.8 +/- 2.8 nm in the foot pad. They are composed of two parts: tubule proper and surface band. The tubule is 7- to 10-nm wide and characterized in cross section by an approximately pentagonal wall and an electron-lucent lumen containing a 1- to 2-nm bead referred to as a spherule. When longitudinal sections of microfibrils are examined at high magnification, the wall of the tubule does not appear as a continuous line but as a series of successive dots. The interpretation of these findings is that the tubule is composed of successive annular segments with an approximately pentagonal outline. The surface band is a 3-nm-wide, ribbon-like structure wrapped around the tubule. The band has dense borders called tracks. Along the tracks, densely stained, 4.6-nm-long "spikes" are attached at 4.0-nm intervals. The wrapping of the bands is somewhat irregular. They may be in a transverse position across single or several microfibrils, in which case each band might constitute a distinct belt; more frequently, the bands are oblique and appear to form a continuous helix. It is proposed that surface bands play a role in holding together the juxtaposed segments making up a tubule. A model has been constructed to represent the association of tubule and band into a typical microfibril. Atypical microfibrils, which are more common in foot pad than in ciliary zonule, appear wavy, lack a definite tubule, and are characterized by distorted, irregular surface bands. They are attributed to proteolysis of typical microfibrils.  相似文献   

19.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

20.
A. C. Neville  S. Levy 《Planta》1984,162(4):370-384
The ultrastructure of the mature internode cell wall of Nitella opaca is described. It is interpreted in terms of a helicoidal array of cellulose microfibrils set in a matrix. A helicoid is a multiple plywood made up of layers of parallel microfibrils. There is a progressive change in direction from ply to ply, giving rise to characteristic arced patterns in oblique sections. A critical tilting test, using an electron microscope fitted with a goniometric stage, showed the expected reversal of direction of the arced pattern. Nitella cell wall is thus more regularly structured than previous studies have shown. From a survey of the cell-wall literature, we show that such arced patterns are common. This indicates that the helicoidal structure may be more widespread than is generally realised, although numerous other cell walls show no signs of it. Nevertheless, there are examples in most major plant taxa, and in several types of cells, including wood tracheids. Most of the examples, however, need confirmation by tilting evidence. There are possible implications for wall morphogenesis. Helicoidal cell walls might arise by selfassembly via a liquid crystalline phase, since it is known that the cholesteric state is itself helicoidal. A computer graphics programme has been developed to plot the expected effects of growth strain on the patterns in oblique sections of helicoids with various original angles between consecutive layers. Herringbone patterns typical of crossed polylamellate texture can be generated in this way, indicating a possible mode of their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号