首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins aggregated into spherulite structures of amyloid fibrils have been observed in patients with certain brain diseases such as Alzheimer's and Parkinson's. The conditions under which these protein spherulites form and grow are not currently known. In order to illuminate the role of environmental factors on protein spherulites, this research aims to explore the kinetics and mechanisms of spherulite formation and growth, as monitored by optical microscopy, in a range of salt concentrations, and initial protein concentrations for two model proteins: bovine β-lactoglobulin and insulin.These two proteins are significantly different in their size and fibril growth rate, but both of these proteins have been shown previously to form amyloid fibrils and spherulites under low pH conditions. The growth pattern of spherulites in each protein solution was monitored and quantified using a linear polymerisation reaction model which allowed for quantification of formation and growth rates across experiments.Two themes were found in the experimental results of spherulite formation and growth: the two model protein systems behaved very similarly to one another when viewed on relative scales, and the spherulites in these systems followed trends seen in some of the previous research of amyloid fibril growth.Specifically, in the presence of salt, both β-lactoglobulin and insulin systems demonstrated maximum growth rates at the same salt concentration, possibly suggesting the role that salt plays in altering rates may not be protein specific (e.g. anion binding to aid unfolding), but may be generic (e.g. electrostatic shielding of repelling charges).Specifically, with variations in the initial protein concentrations, spherulite trends across both model systems were a decrease in appearance time (faster appearance) and an increased growth rate as concentration increased. The appearance time decreased at a diminishing rate towards a limiting shortest appearance time. A limiting shortest appearance time suggests that, in the higher concentrations of protein tested, spherulite formation is not dependent upon the spatial concentration of protein but on the preparedness of the protein to form or join the spherulite.  相似文献   

2.
Amyloid fibril forming proteins have been related to some neurodegenerative diseases and are not fully understood. In some such systems, these amyloid fibrils have been found to form radially oriented spherulite structures. The thermal dependence of formation and growth of these spherulite structures in two model protein systems, beta-lactoglobulin and insulin at low pH aqueous and high temperature conditions, have been monitored with time-lapse optical microscopy and quantified. A population-based polymerization reaction model was developed and applied to the experimental data with excellent agreement. While spherulites in the insulin solutions formed and grew at approximately 25x the rate of spherulites in the beta-lactoglobulin solutions, the temperature dependence and activation energies of both systems were found to be very similar to one another, suggesting that the underlying rate-limiting mechanisms for both formation and growth are consistent across the two systems. The similarity of both of these amyloid fibril forming protein systems provides confidence in their use as model systems for extrapolating understanding to similar systems involved in neurodegenerative diseases.  相似文献   

3.
A common feature of many of the most important and prominent amyloid-forming proteins is their ability to bind lipids and lipid complexes. Lipids are ubiquitous components of disease-associated amyloid plaques and deposits in humans, yet the specific roles of lipid in the process of amyloid fibril formation are poorly understood. This study investigated the effect of phospholipids on amyloid fibril formation by human apolipoprotein (apo) C-II using phosphatidylcholine derivatives comprising acyl chains of up to 14 carbon atoms. Submicellar concentrations of short-chain phospholipids increase the rate of apoC-II fibril formation in an acyl-chain-length- and concentration-dependent fashion, while high micellar concentrations of phospholipids completely inhibited amyloid formation. At lower concentrations of soluble phospholipid complexes, fibril formation by apoC-II was only partially inhibited, and under these conditions, aggregation followed a two-phase process. Electron microscopy showed that the fibrils resulting from the second phase of aggregation were straight, cablelike, and about 13 nm wide, in contrast to the homogeneous twisted-ribbon morphology of apoC-II fibrils formed under lipid-free conditions. Seeding experiments showed that this alternative fibril structure could be templated both in the presence and in the absence of lipid complex, suggesting that the two morphologies result from distinct assembly pathways. Circular dichroism spectroscopy studies indicated that the secondary structural conformation within the straight-type and ribbon-type fibrils were distinct, further suggesting divergent assembly pathways. These studies show that phospholipid complexes can change the structural architecture of mature fibrils and generate new fibril morphologies with the potential to alter the in vivo behaviour of amyloid. Such lipid interactions may play a role in defining the structural features of fibrils formed by diverse amyloidogenic proteins.  相似文献   

4.
Amyloid fibrils are often found arranged into large ordered spheroid structures, known as spherulites, occurring in vivo and in vitro. The spherulites are predominantly composed of radially ordered amyloid fibrils, which self-assemble from protein in solution. We have observed and measured amyloid spherulites forming from heat-treated solutions of bovine insulin at low pH. The spherulites form in large numbers as semispherical dome-shaped objects on the cell surfaces, showing that surface defects or impurities, or the substrates themselves, can provide good nucleation sites for their formation. Using optical microscopy, we have measured the growth of individual spherulites as a function of time and in various conditions. There is a lag time before nucleation of the spherulites. Once they have nucleated, they grow, each with a radius increasing linearly, or faster than linearly, with time. Remarkably, this growth period has a sudden end, at which all spherulites in the system suddenly stop growing. A model of spherulite formation based on the polymerization of oriented fibrils around a nucleus, from a precursor in solution, quantitatively accounts for the observed growth kinetics. Seeding of native insulin solutions with preformed spherulites led to the preformed spherulites growing without a lag time. This seeding behavior is evidence that the fibrils in the spherulites assemble from small protein species rather than fibrils. The density of the spherulites was also measured and found to be constant with respect to radius, indicating that the space fills as the spherulite grows.  相似文献   

5.
Various proteins have been shown to form various aggregated structures including the filamentous aggregates known as amyloid fibrils depending on the solution conditions. Hen egg white lysozyme (HEWL) is one of the proteins that form the amyloid fibrils. To gain insight into the mechanism of this polymorphism of the aggregated structures, we employed a model system consisting of HEWL, pure water, and ethanol, and investigated the kinetic process of the fibril formation in various salt concentrations with time-resolved neutron scattering. It was shown that by addition of NaCl in a range between 0.3 mM and 1.0 mM to HEWL solution in 90% ethanol, gelation occurred, and this gelation proceeded through a two-step process: the lateral association of the protofilaments, followed by the cross-linking of these fibrils formed. Both the structures of the fibrils and the rate of the gelation depended on NaCl concentration. The average structures of the fibrils formed at 1.0 mM NaCl were characterized by the radius of gyration of their cross-section (45.9(+/-0.4)A) and the number of the protofilaments within the fibril (4.10(+/-0.12)), corresponding to the mature amyloid fibrils. A range of intermediate structures was formed below 1 mM NaCl. Above 2 mM NaCl, precipitation occurred because of the formation of amorphous aggregates. Here the branch point to the formation of the mature amyloid fibrils or to the amorphous aggregates was after the formation of the protofilaments. Sensitivity of the aggregated structures to salt concentration suggests that electrostatic interaction plays an essential role in the formation of these structures. The structural diversity both in the fibrils and the aggregated structures of the fibrils can be interpreted in terms of the difference in the degree of the electrostatic shielding at different salt concentrations.  相似文献   

6.
The misfolding and self-assembly of proteins into amyloid fibrils, which occur in several debilitating and age-related diseases, are affected by common components of amyloid deposits, notably lipids and lipid complexes. Previously, the effects of phospholipids on amyloid fibril formation by apolipoprotein (apo) C-II have been examined, where low concentrations of micellar phospholipids and lipid bilayers induce a new, straight rod-like morphology for apoC-II fibrils. This fibril appearance is distinct from the twisted-ribbon morphology observed when apoC-II fibrils are formed in the absence of lipids. We used total internal reflection fluorescence microscopy (TIRFM) to visualize the described polymorphism of apoC-II amyloid fibrils. The spontaneous assembly of apoC-II into either twisted-ribbon fibrils in the absence of lipids or into fibrils of straight rod-like morphology when lipids are present was captured by TIRFM. The latter was found to be better suited for visualization using TIRFM. The difference between seeding of apoC-II straight fibrils on microscopic quartz slide and in test tube suggested a role for the effects of incubation surface on fibril formation. Seed-dependent growth of apoC-II straight fibrils was probed further by using a dual-labelling construct, giving insights into the straight fibril growth pattern.  相似文献   

7.
The peptide hormone insulin forms a spherical aggregate, called a spherulite, at low pH and high temperature. A spherulite is composed of a core and many fibrils extending from it. These fibrils are thought to be amyloid fibers with a beta-sheet structure. In the present study, spherulites with a diameter of 50-100 microm were examined by X-ray fiber diffraction using a 6 microm beam. When a spherulite was scanned with the microbeam and the observed diffraction patterns were arranged in a two-dimensional array, the direction of the scatter was centrosymmetric, demonstrating a symmetric growth of fibrils. There were diffraction peaks at Bragg spacings of 23 nm, 3.3 nm and 1.2 nm in the direction perpendicular to the fibrils and 0.48 nm along the fibrils. The 0.48 nm reflection shows that the hydrogen bonds between beta-strands are along the fibril. The 23 nm reflection corresponds to the separation between fibrils, the 3.3 nm reflection is due to the arrangement of protofilaments, and the 1.2 nm reflection arises from the arrangement of peptide chains. On the basis of these results, a model of a fibril with an extended insulin molecule is proposed.  相似文献   

8.
We demonstrate that bovine core histones are natively unfolded proteins in solutions with low ionic strength due to their high net positive charge at pH 7.5. Using a variety of biophysical techniques we characterized their conformation as a function of pH and ionic strength, as well as correlating the conformation with aggregation and amyloid fibril formation. Tertiary structure was absent under all conditions except at pH 7.5 and high ionic strength. The addition of trifluoroethanol or high ionic strength induced significant alpha-helical secondary structure at pH 7.5. At low pH and high salt concentration, small-angle X-ray scattering and SEC HPLC indicate the histones are present as a hexadecamer of globular subunits. The secondary structure at low pH was independent of the ionic strength or presence of TFE, as judged by FTIR. The data indicate that histones are able to adopt five different relatively stable conformations; this conformational variability probably reflects, in part, their intrinsically disordered structure. Under most of the conditions studied the histones formed amyloid fibrils with typical morphology as seen by electron microscopy. In contrast to most aggregation/amyloidogenic systems, the kinetics of fibrillation showed an inverse dependence on histone concentration; we attribute this to partitioning to a faster pathway leading to non-fibrillar self-associated aggregates at higher protein concentrations. The rate of fibril formation was maximal at low pH, and decreased to zero by pH 10. The kinetics of fibrillation were very dependent on the ionic strength, increasing with increasing salt concentration, and showing marked dependence on the nature of the ions; interestingly Gdn.HCl increased the rate of fibrillation, although much less than NaCl. Different ions also differentially affected the rate of nucleation and the rate of fibril elongation.  相似文献   

9.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

10.
To understand and tackle amyloid-related diseases, it is crucial to investigate the factors that modulate amyloid formation of proteins. Our previous studies proved that the N47A mutant of the α-spectrin SH3 (Spc-SH3) domain forms amyloid fibrils quickly under mildly acidic conditions. Here, we analyze how experimental conditions influence the kinetics of assembly and the final morphology of the fibrils. Early formation of curly fibrils occurs after a considerable conformational change of the protein and the concomitant formation of small oligomers. These processes are strongly accelerated by an increase in salt concentration and temperature, and to a lesser extent by a reduction in pH. The rate-limiting step in these events has a high activation enthalpy, which is significantly reduced by an increase in NaCl concentration. At low-to-moderate NaCl concentrations, the curly fibrils convert to straight and twisted amyloid fibrils after long incubation times, but only in the presence of soluble species in the mixture, which suggests that the curly fibrils and the twisted amyloid fibrils are diverging assembly pathways. The results suggest that the influence of environmental variables on protein solvation is crucial in determining the nucleation kinetics, the pathway of assembly, and the final fibril morphology.  相似文献   

11.
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.  相似文献   

12.
The conversion of the alpha-helical, cellular isoform of the prion protein (PrP C ) to the insoluble, beta-sheet-rich, infectious, disease-causing isoform (PrP Sc ) is the fundamental event in the prion diseases. The C-terminal fragment of PrP Sc (PrP 27-30) is formed by limited proteolysis and retains infectivity. Unlike full-length PrP Sc , PrP 27-30 polymerizes into rod-shaped structures with the ultra-structural and tinctorial properties of amyloid. To study the folding of PrP, both with respect to the formation of PrP Sc from PrP C and the assembly of rods from PrP 27-30, we solubilized Syrian hamster (sol SHa) PrP 27-30 in low concentrations (0.2%) of sodium dodecyl sulfate (SDS) under conditions previously used to study the structural transitions of this protein. Sol SHaPrP 27-30 adopted a beta-sheet-rich structure at SDS concentrations between 0.02% and 0.04% and remained soluble. Here we report that NaCl stabilizes SHaPrP 27-30 in a soluble, beta-sheet-rich state that allows fibril assembly to proceed over several weeks. Under these conditions, fibril formation occurred not only with sol PrP 27-30, but also with native SHaPrP C . Addition of sphingolipids seems to increase fibril growth. When recombinant (rec) SHaPrP(90-231) was exposed to low concentrations of SDS, similar to those used to polymerize sol SHaPrP 27-30 in the presence of 250 mM NaCl, fibril formation occurred regularly. When fibrils formed from PrP 27-30 or PrP C were bioassayed in transgenic mice overexpressing full-length SHaPrP, no infectivity was obtained, whereas amyloid fibrils formed of rec mouse PrP(89-230) were infectious. At present, it cannot be determined whether the lack of infectivity is caused by a difference in the structure of the fibrils or in the bioassay conditions.  相似文献   

13.
The formation of amyloid fibrils is an intractable problem in which normally soluble protein polymerizes and forms insoluble ordered aggregates. Such aggregates can range from being a nuisance in vitro to being toxic in vivo. The latter is true for lysozyme, which has been shown to form toxic deposits in humans. In the present study, the effects of partial denaturation of hen egg-white lysozyme via incubation in a concentrated solution of the denaturant guanidine hydrochloride are investigated. Results show that when lysozyme is incubated under moderate guanidine hydrochloride concentrations (i.e., 2-5 M), where lysozyme is partially unfolded, fibrils form rapidly. Thioflavin T, Congo red, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and circular dichroism spectroscopy are all used to verify the production of fibrils under these conditions. Incubation at very low or very high guanidine hydrochloride concentrations fails to produce fibrils. At very low denaturant concentrations, the structure of lysozyme is fully native and very stable. On the other hand, at very high denaturant concentrations, guanidine hydrochloride is capable of dissolving and dis-aggregating fibrils that are formed. Raising the temperature and/or concentration of lysozyme accelerates fibril formation by further adding to the concentration of partially unfolded species. The addition of preformed fibrils also accelerates fibril formation but only under partially unfolding conditions. The results presented here provide further evidence that partial unfolding is a prerequisite to fibril formation. Partial denaturation can accelerate fibril formation in much the same way that mutations have been shown to accelerate fibril formation.  相似文献   

14.
Collagen fibrils were obtained in vitro by aggregation from acid-soluble type I collagen at different initial concentrations and with the addition of decorin core or intact decorin. All specimens were observed by scanning electron microscopy and atomic force microscopy. In line with the findings of other authors, lacking decorin, collagen fibrils undergo an extensive lateral association leading to the formation of a continuous three-dimensional network. The addition of intact decorin or decorin core was equally effective in preventing lateral fusion and restoring the normal fibril appearance. In addition, the fibril diameter was clearly dependent on the initial collagen concentration but not on the presence/absence of proteoglycans. An unusual fibril structure was observed as a result of a very low initial collagen concentration, leading to the formation of huge, irregular superfibrils apparently formed by the lateral coalescence of lesser fibrils, and with a distinctive coil-structured surface. Spots of incomplete fibrillogenesis were occasionally found, where all fibrils appeared made of individual, interwined subfibrils, confirming the presence of a hierarchical association mechanism.  相似文献   

15.
To obtain insight into the mechanism of fibril formation, we examined the effects of ultrasonication, a strong agitator, on beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis. Upon sonication of an acid-unfolded beta2-m solution at pH 2.5, thioflavin T fluorescence increased markedly after a lag time of 1-2 h with a simultaneous increase of light scattering. Atomic force microscopy images showed the formation of a large number of short fibrils 3 nm in diameter. When the sonication-induced fibrils were used as seeds in the next seeding experiment at pH 2.5, a rapid and intense formation of long fibrils 3 nm in diameter was observed demonstrating seed-dependent fibril growth. We then examined the effects of sonication on the native beta2-m at neutral pH, conditions under which amyloid deposits occur in patients. In the presence of 0.5 mm sodium dodecyl sulfate, a model compound of potential trigger and stabilizer of amyloid fibrils in patients, a marked increase of thioflavin T fluorescence was observed after 1 day of sonication at pH 7.0. The products of sonication caused the accelerated fibril formation at pH 7.0. Atomic force microscopy images showed that the fibrils formed at pH 7.0 have a diameter of more than 7 nm, thicker than those prepared at pH 2.5. These results indicate that ultrasonication is one form of agitation triggering the formation of amyloid fibrils of beta2-m, producing fibrils adapted to the respective pH.  相似文献   

16.
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.  相似文献   

17.
Amyloid fibrils are self-associating filamentous structures deposited in extracellular tissue in various neurodegenerative and protein misfolding disorders. It has been shown that beta-sheet-breaker (BSB) peptides may interfere with amyloid fibril assembly. Although BSB peptides are prospective therapeutic agents in amyloidosis, there is ambiguity about the mechanisms and generality of their action. In the present work we analyzed the effect of the BSB peptide LPFFD on the growth kinetics, morphologic, and mechanical properties of amyloid β25-35 (Aβ25-35) fibrils assembled in an oriented array on mica surface. Aβ25-35 is thought to represent the biologically active, toxic fragment of the full-length Aβ peptide. Growth kinetics and morphologic features were analyzed using in situ atomic force microscopy in the presence of various concentrations of LPFFD. We found that the addition of LPFFD only slightly altered the assembly kinetics of Aβ25-35 fibrils. Already formed fibrils did not disassemble in the presence of high concentrations of LPFFD. The mechanical stability of the fibrils was explored with force spectroscopy methods. The nanomechanical behavior of Aβ25-35 fibrils is characterized by the appearance of force staircases which correspond to the force-driven unzipping and dissociation of several protofilaments. In the presence of LPFFD single-plateau force traces dominated. The effects of LPFFD on Aβ25-35 fibril assembly and stability suggest that inter-protofilament interactions were slightly weakened. Complete disassembly of fibrils, however, was not observed. Thus, under the conditions explored here, LPFFD may not be considered as a BSB peptide with generalized beta-sheet breaking properties.  相似文献   

18.
Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circular dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an α-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in β-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.  相似文献   

19.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

20.
The dependence on environmental conditions of the assembly of barstar into amyloid fibrils was investigated starting from the nonnative, partially folded state at low pH (A-state). The kinetics of this process was monitored by CD spectroscopy and static and dynamic light scattering. The morphology of the fibrils was visualized by electron microscopy, while the existence of the typical cross- structure substantiated by solution X-ray scattering. At room temperature, barstar in the A-state is unable to form amyloid fibrils, instead amorphous aggregation is observed at high ionic strength. Further destabilization of the structure is required to transform the polypeptide chain into an ensemble of conformations capable of forming amyloid fibrils. At moderate ionic strength (75 mM NaCl), the onset and the rate of fibril formation can be sensitively tuned by increasing the temperature. Two types of fibrils can be detected differing in their morphology, length distribution and characteristic far UV CD spectrum. The formation of the different types depends on the particular environmental conditions. The sequence of conversion: A-statefibril type Ifibril type II appears to be irreversible. The transition into fibrils is most effective when the protein chain fulfills particular requirements concerning secondary structure, structural flexibility and tendency to cluster.Abbreviations CD circular dichroism - DLS dynamic light scattering - EM electron microscopy - SLS static light scattering - SAXS small-angle X-ray scattering - SOXS solution X-ray scattering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号