首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
树突状细胞(dendritic cells, DCs)作为专职抗原提呈细胞启动了哮喘初次免疫应答,但是DCs在抗原特异性免疫应答及其引发的哮喘慢性气道炎症反应中的作用存在一定争议,需要重新认识。本文通过综述相关研究,认为DCs在哮喘中的免疫活性并不局限于启动过敏原诱发的初次免疫应答,DCs还可以通过激活记忆性T细胞参与介导抗原特异性免疫应答,并在哮喘慢性气道炎症病理进程中发挥重要作用。此外,在多种因素作用下,哮喘气道DCs可以分化为具有免疫抑制作用或引起免疫耐受的调节性DCs (DCreg)或耐受性DCs (tolDC),抑制哮喘Th2细胞主导的慢性气道炎症。通过调节气道免疫微环境或细胞内源性信号分子,抑制DCs在抗原特异性免疫应答中活化记忆性T细胞的能力,或通过诱导DCreg/tolDC细胞分化,进而控制慢性气道炎症,将是未来防治哮喘新的重要研究方向。  相似文献   

2.
调节性T细胞(regulatory T cell,Treg)是一群具有抑制其它免疫细胞功能的起负性调控的细胞群. Treg细胞能抑制多种免疫细胞,如CD4+T和CD8+T淋巴细胞、NK细胞、B淋巴细胞以及树突状细胞的活化和增殖,是体内维持免疫系统稳定,防止出现自身免疫性疾病重要因素.最新研究表明,Treg细胞在肿瘤免疫逃逸中也发挥重要作用. 肿瘤细胞通过扩增或招募Treg细胞,抑制机体对肿瘤的免疫作用,由此可知,Treg细胞在肿瘤的发生和发展过程中发挥重要作用. 因此,抑制Treg细胞的活性和数量是包括胶质瘤在内的肿瘤免疫治疗有效的方式.  相似文献   

3.
目的:检测慢性乙型肝炎患者外周血中Treg细胞的比例,探讨其对DC细胞的免疫抑制作用。方法:检测CHB患者和正常对照组外周血CD4+,CD25+,Treg及DC表面因子CD80和HLA-DR的表达;在DC培养不同时间内加入不同比例CHB Treg细胞,观察DC对淋巴细胞增殖的影响以及细胞因子IL-10及TGF-β的表达变化。结果:CHB患者外周血Treg细胞比例高于对照组,差异有统计学意义(P0.05);CHB患者DC细胞表面分子CD80和HLA-DR表达均低于对照组,差异有统计学意义(P0.05);经Treg细胞处理后,DC细胞刺激淋巴细胞的增殖能力下降,淋巴细胞增殖的抑制率显著升高(P0.05);随Treg细胞增加,IL-10及TGF-β水平升高,差异有统计学意义(P0.05)。结论:CHB患者外周血中Treg细胞的增加可能通过诱导IL-10和TGF-β的表达来抑制DC细胞的免疫功能。  相似文献   

4.
血红素加氧酶-1(heme oxygenase-1, HO-1)作为体内保护蛋白, 在哮喘气道炎症中具有显著的抗炎作用. foxp3+CD4 +CD25 + T调节细胞(T regulatory cells, Treg)是调节性细胞的主要组成部分, 以抑制的方式调控其他效应细胞的活性和功能. IL-10是多种细胞分泌的抗炎细胞因子, 具有免疫抑制功能. 本研究探讨HO-1诱导foxp3 +CD4 +CD25 + Treg, 增加IL-10分泌以拮抗哮喘气道炎症. 选用磁珠分离CD4+CD25+ Treg, 含 HO-1 质粒转染或血红素(Hemin)和锡-原卟啉(Sn-protoporphyrin, SnPP)处理, RT-PCR和Western blot方法检测显示Hemin上调HO-1表达, CD4+CD25+ Tregfoxp3 表达及蛋白水平显著增加, ELISA方法测定上清液IL-10水平明显升高. 卵清蛋白(ovalbumin, OVA)致敏、激发的哮喘小鼠, Hemin上调HO-1表达, 肺和脾脏中foxp3表达及蛋白量亦增加, 血清IL-10增高, 而OVA特异性IgE水平降低. 肺病理组织学检测、支气管肺泡灌洗液(bronchial alveolar lavage fluid, BALF)中细胞总数和嗜酸性粒细胞(eosinophil, EOS)计数均显示炎性细胞尤其是EOS浸润减少; CD4 +CD25 + Treg功能抑制实验发现, OVA致敏、激发Balb/C小鼠经Hemin干预后, 抑制作用显著增加; SnPP能逆转HO-1作用. IL-10剔除的B6.129P2-Il10tm1Cgn/J小鼠Treg抑制作用经Hemin干预后仍未改善. 但体内外实验发现TGF-β水平无变化. 本研究表明: HO-1可能经诱导CD4 +CD25+ Treg 特异性转录因子foxp3表达, 激活CD4 +CD25 + Treg, 促进IL-10分泌, 以拮抗哮喘气道炎症.  相似文献   

5.
目的:通过靶向CTLA4 siRNA探讨CTLA4在T调节细胞诱导异种抗原免疫耐受中是否发挥功能及其作用机制。方法:体外扩增培养利用磁珠分选出的T调节细胞,AO/PI染色计算活率并通过细胞计数作出生长曲线,流式细胞仪检测扩增后细胞表型;采用Alex488染料标记siRNA,通过流式细胞仪检测siRNA的转染效率;实时定量PCR检测靶向CTLA4 siRNA的沉默效率;流式细胞术检测CTLA4在蛋白水平的变化;混合淋巴实验检测CTLA4表达下调后,T调节细胞的功能变化。结果:经过4周体外扩增,T调节细胞能够增长约1 200倍,并具有高活率和高纯度;siRNA的转染效率为61.8%±4.5%;Realtime PCR和流式细胞术检测CTLA4在mRNA水平和蛋白水平均有不同程度下降,其结果与对照组相比差异显著(P0.05);混合淋巴实验结果显示T效应细胞在受到异种抗原刺激时会发生增殖,Treg细胞能够抑制这种增殖,但是CTLA4表达下调后明显减弱了T调节细胞的抑制能力。进一步,在DC细胞参与的混合淋巴实验中发现Treg能够通过DC抑制T效应细胞对异种抗原的应答,而si CTLA4-Treg不能通过DC抑制T效应细胞增殖。结论:CTLA4在Treg介导的异种免疫应答中发挥着重要作用,这种作用方式可能是通过直接作用于T效应细胞或者间接通过DC细胞作用于T效应细胞发挥作用。靶向CTLA4 siRNA能够下调Treg细胞CTLA4的表达,影响Treg细胞抑制异种抗原引起T效应细胞应答的能力。  相似文献   

6.
CD4+CD25+FOXP3+的调节T细胞(regulatory T cells,Treg)在维持机体免疫平衡方面起着重要的作用。体外扩增Treg细胞用于治疗自身免疫病、哮喘及诱导器官移植免疫耐受引起人们极大的兴趣。Treg细胞可分为2个亚群,分别为nTreg和iTreg,两者有不同的生物学特性。nTreg在特定条件下,可以分泌具有促进炎症的IL-17;iTreg在体内可丢失FOXP3,失去其免疫抑制功能。Treg细胞用于临床治疗,还有许多问题需要研究解决。  相似文献   

7.
CD4+CD25+调节性T细胞   总被引:13,自引:0,他引:13  
调节性T细胞(regulatory T cells,Treg)是机体维持自身耐受的重要组成部分。CD4^ CD25^ Treg细胞来源于胸腺,其主要功能是抑制自身反应性T细胞,并且其作用是通过直接的Treg-T效应细胞之间的相互接触方式来实现的。CD4^ CD25^ Treg细胞可分泌多种抑制性细胞因子,但与其抑制功能关系并不明确,目前有证据表明GITR和Foxp3与CD4^ CD25^ Treg细胞的抑制功能有关,并且Foxp3已作为CD4^ CD25^ Treg细胞的特异性标志。通过IL-10、TGF-β等抑制性细胞因子、imDC以及转基因技术可以产生具有免疫抑制功能的调节性T细胞。调节性T细胞在免疫相关性疾病、肿瘤免疫和抗感染免疫等方面具有重要意义。  相似文献   

8.
近年来,随着许多病毒性疾病的发展,社会对于新型疫苗的研发迫在眉睫。与传统疫苗相比,新型疫苗具有安全可靠的优点,但其免疫原性较弱的特点也十分突出,因此,研究出安全稳定有效的免疫调节剂来增强疫苗的免疫效果成为研究学者们共同的关注点。枸杞是传统的名贵补益中药,枸杞多糖(Lycium barbarum polysaccharide,LBP)是其中的主要生物活性成分,具有免疫调节、抗肿瘤、抗衰老等多种生物学作用。本研究通过体内实验观察LBP对口蹄疫重组腺病毒疫苗(rAd5VP1)诱导小鼠脾脏树突状细胞(Dendritic cells,DC)成熟、辅助性T细胞1(T helper cells 1,Th1)、辅助性T细胞2(T helper cells 2,Th2)、滤泡辅助性T细胞(T follicular helper cells,Tfh)及调节性T细胞(Regulatory T cells,Treg)分化的免疫调节作用,为阐明LBP免疫调节的新机制提供实验依据。6周龄的雌性BALB/c小鼠随机分为5组,每组5只,所有小鼠均行腹腔注射rAd5VP1,同时分别给予低剂量(10mg/kg·d)、中剂量(20mg/kg·d)、高剂量(40mg/kg·d)的LBP,阴性对照组和阳性对照组分别给予磷酸盐缓冲液(Phosphate buffer solution,PBS)和脂多糖(Lipopolysaccharide,LPS)(1mg/kg·d)。免疫7d后,应用流式细胞术(Flow cytometry,FCM)检测小鼠脾脏DC(CD11c+MHCⅡ+CD86+)、Th1细胞(CD4+IFN-γ+)、Th2细胞(CD4+IL-4+)、Tfh细胞(CD4+CXCR5+)及Treg细胞(CD4+CD25+FoxP3+)的数量与比例。结果表明,与PBS组相比,LBP能明显诱导DC的成熟,DC表面的共刺激分子CD86的表达量明显升高;LBP能明显促进Th2细胞、Tfh细胞的分化,LBP对Th1细胞的分化无明显影响,LBP能抑制Treg细胞的分化。本研究证实LBP作为疫苗免疫调节剂,可调控DC及Th细胞亚群的分化而发挥免疫调节作用,为LBP的免疫调节机制提供理论依据。  相似文献   

9.
自然杀伤T细胞(NKT细胞)是一类与自然杀伤细胞具有共同表面标记的T细胞,可识别由CD1d呈递的糖脂类抗原。活化后的NKT细胞通过分泌多种细胞因子和趋化因子,增强树突细胞(DC)、T细胞、B细胞等多种免疫细胞的功能,在非特异与特异性免疫之间起桥梁作用。近年来研究发现,NKT细胞不仅在抗细菌感染中发挥重要作用,在抗病毒及抗寄生虫感染中也发挥一定作用。  相似文献   

10.
探讨血红素加氧酶-1(HO-1, heme oxygenase-1)介导CD4+CD25High调节性T淋巴细胞(Treg, regulatory T cells)拮抗哮喘气道炎症的作用. 用卵清蛋白(OVA)致敏、激发小鼠制备并建立哮喘动物模型, 并在致敏、激发过程中经氯化高铁血红素(Hemin)或锡-原卟啉(SnPP, Sn- protoporphyrin)处理. 分别测定激发后各组动物血清OVA特异性IgE, 支气管肺泡灌洗液中(BALF, bronchial alveolar lavage fluid)细胞总数和嗜酸性粒细胞(EOS, eosinophil)数及外周血CD4+CD25High Treg细胞变化和肺组织HO-1Foxp3 mRNA表达量, 结合病理切片分析气道炎症状况. 结果显示: OVA组、Hemin组、SnPP组血清OVA-特异性IgE和BALF中细胞总数及EOS数明显高于正常对照组, 但Hemin组IgE水平及BALF中细胞总数和EOS数明显低于OVA组; 而OVA组和SnPP组间IgE水平及BALF中细胞总数和EOS数无显著性差异; 病理组织学显示OVA组、Hemin组和SnPP组气道组织均见EOS浸润, 但Hemin组气道炎症仍明显轻于OVA组和SnPP组; Hemin组外周血CD4+CD25High Treg细胞比例及肺组织Foxp3 mRNA相对表达量明显高于OVA组. Hemin显著上调HO-1表达. 实验表明, 用Hemin诱导HO-1高表达后外周血CD4+CD25High Treg细胞比例及Foxp3 mRNA相对表达量明显升高, 同时血清OVA特异性IgE明显下降, BALF中细胞总数和EOS数减少, 气道炎症减轻; 提示HO-1可通过提高CD4+CD25High Treg细胞比例并增强其功能来调节体内Th1/Th2平衡, 在支气管哮喘中起到保护作用.  相似文献   

11.
Although CD4(+)CD25(+) regulatory T (Treg) cells are known to suppress Th1 cell-mediated immune responses, their effect on Th2-type immune responses remains unclear. In this study we examined the role of Treg cells in Th2-type airway inflammation in mice. Depletion and reconstitution experiments demonstrated that the Treg cells of naive mice effectively suppressed the initiation and development of Th2-driven airway inflammation. Despite effective suppression of Th2-type airway inflammation in naive mice, adoptively transferred, allergen-specific Treg cells were unable to suppress airway inflammation in allergen-presensitized mice. Preactivated allergen-specific Treg cells, however, could suppress airway inflammation even in allergen-presensitized mice by accumulating in the lung, where they reduced the accumulation and proliferation of Th2 cells. Upon activation, allergen-specific Treg cells up-regulated CCR4, exhibited enhanced chemotactic responses to CCR4 ligands, and suppressed the proliferation of and cytokine production by polarized Th2 cells. Collectively, these results demonstrated that Treg cells are capable of suppressing Th2-driven airway inflammation even in allergen-presensitized mice in a manner dependent on their efficient migration into the inflammatory site and their regulation of Th2 cell activation and proliferation.  相似文献   

12.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3.DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms.Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.  相似文献   

13.
14.
Our previous study showed that intraperitoneal injection of α‐galactosylceramide (α‐GalCer) has the ability to activate lung iNKT cells, but α‐GalCer‐activated iNKT cells do not result in airway inflammation in wild‐type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α‐GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell‐knockout mice and co‐culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α‐GalCer administration in specific anti‐CD25 mAb‐treated mice. Our data showed that intraperitoneal injection of α‐GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell‐knockout mice. However, α‐GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell‐knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α‐GalCer. Furthermore, α‐GalCer administration could enhance iNKT cells to secrete IL‐2, and neutralization of IL‐2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α‐GalCer can induce the generation of lung Treg cells in mice through the release of IL‐2 by the activated iNKT cells.  相似文献   

15.
Heme oxygenase-1 (HO-1) has anti-inflammatory effects in asthma. CD4+CD25(high) regulatory T cells (Treg) are a potent immunoregulator that suppresses the immune response. We studied the effects of HO-1-mediated CD4+CD25(high) Treg on suppression of allergic airway inflammation by comparing mice treated with hemin, OVA, Sn-protoporphyrin (SnPP), and hemin plus SnPP. Airway responsiveness, airway eosinophil infiltration, the level of OVA-specific IgE, and the numbers of cells in general and eosinophils in particular in bronchial alveolar lavage fluid were lower in the hemin group than in the OVA, SnPP, and hemin plus SnPP groups. The expressions of HO-1 mRNA and protein in the lung were increased by repeated administrations of hemin and SnPP. However, the activity of HO-1 was highest in hemin mice. The percentage and suppressive function of CD4+CD25(high) Treg and the expression of Foxp3 mRNA were obviously enhanced after treatment with hemin. This increase was diminished by the administration of SnPP. The concentration of serum IL-10 was higher in the hemin group than in the other groups, whereas the level of serum TGF-beta did not significantly differ across groups. Furthermore, the ratio of IFN-gamma/IL-4 mRNA in the lung was higher in hemin-treated mice than in OVA and SnPP mice. The suppressive capacity of CD4+CD25(high) Treg was not enhanced in the IL-10-deficient mice treated with hemin. In conclusion, our experiments in the animal model demonstrated that HO-1 has anti-inflammatory effects, probably via enhancement of the secretion of IL-10 and promotion of the percentage of CD4+CD25(high) Treg.  相似文献   

16.
Lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC) activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC) were matured with LPS (or TNF-α) +/− isoflavones (genistein or daidzein). The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/− isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4+ T cells for 5 days or with autologous natural killer (NK) cells for 2 hours. The percentages of proliferating IFN-γ+ CD4+ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86) and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4+ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions.  相似文献   

17.
Foxp3+ regulatory T cells (Tregs) play a pivotal role in the maintenance of peripheral T cell tolerance and are thought to interact with dendritic cells (DC) in secondary lymphoid organs. We analyzed here the in vivo requirements for selective expansion of Ag-specific Treg vs CD4+CD25- effector T cells and engagement of Ag-specific Treg-DC interactions in secondary lymphoid organs. Using i.v. Ag delivery in the absence of inflammation, we found that CD4+CD25+Foxp3+ Tregs undergo vigorous expansion and accumulate whereas naive CD4+CD25-Foxp3- T cells undergo abortive activation. Quantifying directly the interactions between Tregs and CD11c+ DC, we found that Tregs establish cognate contacts with endogenous CD11c+ DC in spleen and lymph nodes at an early time point preceding their expansion. Importantly, we observed that as few as 10(3) Tregs selectively expanded by i.v. Ag injection are able to suppress B and T cell immune responses in mouse recipients challenged with the Ag. Our results demonstrate that Tregs are selectively mobilized by Ag recognition in the absence of inflammatory signals, and can induce thereafter potent tolerance to defined Ag targets.  相似文献   

18.
M Hubo  H Jonuleit 《PloS one》2012,7(8):e44056

Background

Dendritic cells (DC) play a key role in initiation and regulation of immune responses. Plasmacytoid DC (pDC), a small subset of DC, characterized as type-I interferon producing cells, are critically involved in anti-viral immune responses, but also mediate tolerance by induction of regulatory T cells (Treg). In this study, we compared the capacity of human pDC and conventional DC (cDC) to modulate T cell activity in presence of Foxp3+ Treg.

Principal Findings

In coculture of T effector cells (Teff) and Treg, activated cDC overcome Treg anergy, abrogate their suppressive function and induce Teff proliferation. In contrast, pDC do not break Treg anergy but induce Teff proliferation even in coculture with Treg. Lack of Treg-mediated suppression is independent of proinflammatory cytokines like IFN-α, IL-1, IL-6 and TNF-α. Phenotyping of pDC-stimulated Treg reveals a reduced expression of Treg activation markers GARP and CTLA-4. Additional stimulation by anti-CD3 antibodies enhances surface expression of GARP and CTLA-4 on Treg and consequently reconstitutes their suppressive function, while increased costimulation with anti-CD28 antibodies is ineffective.

Conclusions/Significance

Our data show that activated pDC induce Teff proliferation, but are insufficient for functional Treg activation and, therefore, allow expansion of Teff also in presence of Treg.  相似文献   

19.
Dendritic cells (DC) play a key role in adaptive immune response. By virtue of their extremely wide distribution and high populational diversity, DC interact with almost all types of immune cells linking innate and adaptive immunity. Due to great diversity of receptors, DC recognize a lot of pathogenic microorganisms and namely DC are responsible for the subsequent immune response. Inflammation triggers maturation of DC, which manifests itself in intracellular rearrangement and in appearance of costimulating molecules (CD40, CD80 and CD86) on DC surface. DC capture and process antigens keeping high amount of immunogenic peptides which are then presented to naive lymphocytes and induce their differentiation into effector cells. Depending on pathogen type and cytokine microenvironment, DC induce polarization of immune responses. In the absence of proinflammatory factors DC induce tolerance. In addition, DC play a crucial role in T-lymphocyte selection and Treg formation. The basic traits of DC biology are reviewed.  相似文献   

20.
W Xu  Q Lan  M Chen  H Chen  N Zhu  X Zhou  J Wang  H Fan  CS Yan  JL Kuang  D Warburton  D Togbe  B Ryffel  SG Zheng  W Shi 《PloS one》2012,7(7):e40314
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号