首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gelvin SB 《Plant physiology》1990,92(2):281-285
The neoplastic diseases crown gall and hairy root are incited by the phytopathogenic bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes, respectively. Although the molecular mechanism of T-DNA transfer to the plant most likely is the same for both species, the physiological basis of tumorigenesis is fundamentally different. Crown gall tumors result from the over-production of the phytohormones auxin and cytokinin specified by A. tumefaciens T-DNA genes. Although the T-DNA of some Riplasmids of A. rhizogenes contains auxin biosynthetic genes, these loci are not always necessary for hairy root formation. Recent experiments suggest that hairy root tumors result from the increased sensitivity of transformed cells to endogenous auxin levels. An understanding of hairy root tumorigenesis will likely result in an increased knowledge of plant developmental processes.  相似文献   

2.
Summary Axenic root tissue cultures were established from primary hairy roots induced on carrot and potato by Agrobacterium rhizogenes strain 15834. cDNA made towards poly-A+ RNA isolated from these tissues, hybridized with a limited number of well-defined fragments of the plasmid DNA present in the inciting A. rhizogenes strain. These data therefore demonstrate that at least part of the rootinducing (Ri) plasmid of Agrobacterium rhizogenes is transferred, stably maintained and expressed in hairy-root plant tissues and confirm that hairy roots are a special type of crown gall. The T-DNA in hairy-root cells appears to have several regions which are related in terms of sequence homology and probably also function to the T-DNA in octopine and nopaline crown gall tumours.  相似文献   

3.
A simple and easy transformation strategy was accomplished on field growing plants of Phyllanthus amarus, an anti-hepatitis B drug plant. Infection of Agrobacterium rhizogenes strains A4M70GUS and ATCC 15834 on decapitated shoots of field growing P. amarus induced hairy roots and crown gall, respectively. Infection with A4M70GUS yielded a mean of 23.2 roots from 40% plants in 40-day period. The crown gall induced on 30% plants after infection with ATCC 15834 grew to 5–10 mm in diameter. The roots and crown galls established in vitro on Murashige and Skoog (MS) basal medium grew well. The hairy roots yielded fivefold (6.91 g) biomass in half-strength MS liquid medium to that of the adventitious roots derived from internode explants in MS medium with 8.0 μM α-naphthaleneacetic acid (1.39 g). Histochemical assay and PCR analysis using the primers of uidA coding region confirmed the hairy roots induced by A4M70GUS. The crown galls induced by ATCC 15834 were confirmed by PCR analysis using rolB gene primers. The protocol enables an easy and early accomplishment of hairy roots.  相似文献   

4.
Hairy roots were produced following the co-cultivation of Agrobacteriumrhizogenes cells with hypocotyls of five varieties of Antirrhinummajus. The use of a strain containing a binary plasmid withT-DNA bearing the ß-glucuronidase reporter gene resultedin the co-transformation of some root clones. Regeneration ofshoots from hairy roots occurred only with variety Golden Monarch.Regenerated plants, some of which were GUS-positive, exhibitedthe abnormal morphology common among hairy root regenerants;they were dwarfed, had an altered leaf shape, a poor root systemand were very delayed in their flowering. Attempts to allowsegregation of the two introduced T-DNAs during crossing ofprimary co-transformants with wild-type plants were not successfulsince all GUS-positive progeny possessed the abnormal morphology.However, ‘semi-dwarf’ plants with morphology muchmore similar to wild-type were produced by the vegetative propagationof selected side-shoots from the transformants. Key words: Antirrhinum, Agrobacterium rhizogenes, transformation, hairy roots  相似文献   

5.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

6.
S ummary . Experiments on the control of crown gall by inoculating susceptible plants with a non-pathogenic strain of Agrobacterium radiobacter have continued. In all experiments, highly significant disease control was achieved. In one experiment, 42% of untreated plants growing in soil heavily infested with A. radiobacter var. tumefaciens died; inoculation of seed with the non-pathogenic strain reduced this to nil. Combined seed and root inoculation was more efficient than seed inoculation alone. In naturally infested soil, combined seed and root inoculation at transplanting gave 99% control of gall formation (as dry weight). A significant increase in plant growth resulted from combined seed and root inoculation. At transplanting, roots should probably be inoculated within 2 h of lifting. This method of biological control is now widely practised by commercial growers in South Australia.  相似文献   

7.
Infections of wound sites on dicot plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. An early step in tumor formation is bacterial attachment to the plant cells. AttR mutants failed to attach to wound sites of both legumes and nonlegumes and were avirulent on both groups of plants. AttR mutants also failed to attach to the root epidermis and root hairs of nonlegumes and had a markedly reduced ability to colonize the roots of these plants. However, AttR mutants were able to attach to the root epidermis and root hairs of alfalfa, garden bean, and pea. The mutant showed little reduction in its ability to colonize these roots. Thus, A. tumefaciens appears to possess two systems for binding to plant cells. One system is AttR dependent and is required for virulence on all of the plants tested and for colonization of the roots of all of the plants tested except legumes. Attachment to root hairs through this system can be blocked by the acetylated capsular polysaccharide. The second system is AttR independent, is not inhibited by the acetylated capsular polysaccharide, and allows the bacteria to bind to the roots of legumes.  相似文献   

8.
Hairy root lines through the infection of Agrobacterium rhizogenes strain (A4) were established from shoot tips and leaves of Rehmannia glutinosa Libosch. Ten lines of hairy roots were selected on the basis of biomass increase in half-strength Gamborg medium (1/2 B5). Transgenic status of the roots was confirmed by polymerase chain reaction using rolB and rolC specific primers. Iridoid glycosides (catalposide, loganin, aucubin and catalpol) and phenylethanoid glycosides (verbascoside and isoverbascoside) identified using HPLC?CESI?CMS, and their contents were compared with untransformed root culture and roots of 1-year-old field-grown plants of R. glutinosa by RP-HPLC. The growth and production of secondary metabolites in ten hairy root lines varied considerably as to the media. Woody plant (WP) medium displayed higher growth in terms of fresh (FW) and dry weights (DW) compared to 1/2 B5 medium. High-yielding hairy root lines produced higher amounts of loganin, catalposide, verbascoside and isoverbascoside in comparison to the untransformed root culture and roots of 1-year-old field-grown plants. The highest amounts of catalposide and loganin in transformed roots were 4.45?mg?g?1 DW (RS-2 hairy root line) and 4.66?mg?g?1 DW (RS-1 hairy root line), respectively. Aucubin and catalpol were detected in some lines in trace amounts. The highest amounts of verbascoside (16.9?mg?g?1 DW) and isoverbascoside (3.46?mg?g?1 DW) were achieved in RS-2 root line. The contents of catalposide, verbascoside and isoverbascoside in high-producing lines were several times higher than in untransformed root culture and roots of R. glutinosa plants grown in soil. Loganin and aucubin could not be detected in roots of field-grown plants. However, the levels of catalpol were much lower in the in vitro roots.  相似文献   

9.
We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10–14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed that rolB genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. Isolated transgenic hairy roots grew rapidly on MS medium supplemented with indole-3-butyric acid. They showed characteristics of transformed roots such as fast growth and high lateral branching in comparison with untransformed roots. Isolated control and transgenic hairy roots grown in liquid medium containing IBA were analyzed to detect ß-carboline alkaloids by High Performance Thin Layer Chromatograghy (HPTLC). Harmine content was estimated to be 1.7 μg g−1 of the dried weight of transgenic hairy root cultures at the end of 50 days of culturing. The transformed roots induced by AR15834 strain, spontaneously, dedifferentiated as callus on MS medium without hormone. Optimum callus induction and shoot regeneration of transformed roots in vitro was achieved on MS medium containing 0.4 mg L−1 naphthaleneacetic acid and 2 mg L−1 6-benzylaminopurine (BAP) after 50 days. The main objective of this investigation was to establish hairy roots in this plant by using A. rhizogenes to synthesize secondary products at levels comparable to the wild-type roots.  相似文献   

10.
We evaluated response differences of normal and transformed (so-called ‘hairy’) roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in ‘hairy’ roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.  相似文献   

11.
Summary Two plant tumors (crown galls and hairy roots) were experimentally provoked on potato cv. Désirée by oncogenic strains of Agrobacterium tumefaciens and A. rhizogenes. A marked shift in the expression of some organ-specific genes occurred in crown galls derived from the central zone of tubers: two novel isozyme genes (Est-B and Pox-E) were expressed, two others (Est-C and Pox-F) were suppressed and the remaining ones were maintained in the original state. When the starting tissue was the stem segment, a smaller shift occurred, namely the activation of Adh-A and the suppression of Pox-F. In all cases, the isozyme profiles characterizing all crown galls, whatever their origin, were identical. Under normal aeration conditions, Adh-A was not expressed in either tumoral or non-tumoral roots. However, under the relative anaerobic conditions of in vitro cultures, a difference existed between both types of roots: Adh-A was expressed in normal but not in tumoral roots. This means that hairy roots can tolerate higher levels of anaerobiosis without giving rise to an anaerobic response. For the remaining isozymes, no alteration occurred in either organized (hairy root) or unorganized (crown gall) tumors, as compared to the corresponding non-tumoral tissues (normal root and callus, respectively).  相似文献   

12.
Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.  相似文献   

13.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

14.
Agrobacterium rhizogenes mediated transformation of Decalepis arayalpathra, an ethnomedicinal plant, was achieved by infecting juvenile hypocotyl explants with different strains, including A4, MTCC 532, TR105 and LBA 5402. Hypocotyl explants induced hairy roots at a higher frequency (53.2 ± 0.3 %) than cotyledons (32.1 ± 0.2 %) when infected with the most virulent strain TR105. The explants co-cultivated 48 h in half-strength salts and vitamins of Murashige and Skoog basal medium (half-MSB) induced hairy roots either directly from the wounds or followed by the formation of gall like structures. Irrespective of the explants, the strain MTCC 532 induced callus alone. The root initials on the galls proliferated vigorously and elongated more rapidly when they were segmented and subcultured on half-MSB medium than the proliferation and elongation of directly emerged roots. The established hairy roots showed intermittent gall formation which was the active sites for hairy roots induction. The molecular evidence of rol A and rol C gene integration was confirmed by PCR amplification and southern blot hybridization. Growth of the hairy roots was undertaken by measuring root growth unit after culturing root tips in half-MSB solid medium and determined fresh weight/dry weight/conductivity during time-course study in shake flask cultures. The maximum biomass and accumulation of the root specific compound, 2-hydroxy-4-methoxy benzaldehyde (MBALD) (0.22 % dry weight), was recorded at the 6th week of growth, which was more than that observed in normal root cultures (0.16 % dry weight).  相似文献   

15.
Summary Inoculation of carrot discs and Lotus corniculatus plantlets with mixtures of different Agrobacterium rhizogenes or of A. rhizogenes and A. tumefaciens or with Agrobacterium strains harboring both an Ri and a modified Ti plasmid resulted in frequent multiple (pluribacterial) transformation of cells, as revealed by the mixed opine-type of hairy roots arising from them. Multiple transformation may account for the presence of dispersed T-DNA inserts in crown gall and hairy root lines. A plant genetic engineering strategy based on segregation of T-DNA inserts in the progeny of multiple transformants is proposed.  相似文献   

16.
An efficient transformation system for the medicinal and aromatic plant, Pogostemon cablin Benth was developed by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots formed directly from the cut edges of leaf explants or via callus stage 8 days after inoculation with the bacterium. The highest frequency of leaf explant transformation by Agrobacterium rhizogenes ATCC15834 was about 80% after infection for 25 days. Hairy roots grew rapidly on plant growth regulators (PGRs)-free Murashige and Skoog (MS) or 6,7-V medium and had characteristics of transformed roots such as fast growth and high lateral branching. The PCR amplification showed that rol genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. The hairy root line, PL6, grew very slowly in the first 8 days, then grew very quickly between day 8 and day 24. The optimum medium for callus induction of hairy roots consisted of 2.0 mg l−1 benzyladenine (BA) and 0.1 mg/l α-naphthaleneacetic acid (NAA); while optimum medium for adventitious shoot regeneration from these cultures consisted of 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Adventitious shoots could be rooted on 1/2MS. Southern blot analysis confirmed that rol genes of TL-DNA of Ri plasmid was integrated with at least three copies into the genome of hairy roots- regenerated P. cablin plants. The results presented provide a solid foundation for production of patchouli essential oil from hairy roots or its regenerated plants and also provide possibilities for utilization of artifical polyploidization or chemical mutation of hairy roots for improving germplasm and breeding of a new cultivar of P. cablin.  相似文献   

17.
For a bacterium to be a successful biocontrol agent against crown gall disease, it must produce an effective agrocin specific for Agrobacterium tumefaciens and be able to colonize host plants efficiently. The colonization abilities of K84 and J73, successful and potential biocontrolling strains, respectively, were compared both in vivo and in vitro. Both strains produced fibrils attaching them to tomato root surfaces and had similar colonization efficiencies up to 14 days after inoculation. However, the ability of J73 to colonize plants for longer periods was significantly less than that of K84. Thus, the presence of fibrils is not sufficient to ensure colonization. No correlation was found between hydrophobicity and colonization.  相似文献   

18.
Within about 10 days after inoculation with Agrobacterium rhizogenes, the vascular bundles of storage root disks of turnip or radish developed small outgrowths with numerous root hairs. Thereafter, adventitious roots (hairy roots) emerged extensively from these outgrowths. The hairy roots which emerged fully supported the growth of host plants, though they lacked geotropism. An excised hairy root could be subcultured as an axenic root culture in the absence of phytohormones. Hairy root cultures with extensive lateral branches grew much more rapidly than those with few lateral branches or ordinary roots. Calli were induced from hairy root cultures in the presence of 2,4-D, and root proliferation from these calli occurred in the absence of 2,4-D. Both the primary hairy roots and the roots which grew from them synthesized agropine and mannopine.  相似文献   

19.
In this study, an efficient transformation system for the medicinal plant Anisodus acutangulus was successfully developed and optimized using Agrobacterium rhizogenes. Three bacterial strains, A4, R1601, and modified C58C1 and three explant types, leaf blade, petiole, and stem, were examined. The highest transformation efficiency of 94.44% was achieved using strain C58C1 with stem explants. Over 20 independent hairy root lines were successfully established with strain C58C1 using stem explants, all of which contained the ro/B and ro/C genes as confirmed by polymerase chain reaction (PCR). Out of four media compositions, the liquid 1/2 MS medium was found the most suitable for hairy root growth. The maximum biomass of one hairy root line increased up to 80 times in liquid 1/2 MS medium after a 30 day culture period. Different hairy root lines displayed a varied capacity for tropane alkaloid production and the best hairy root line (T4) from the C58C1-stem combination produced up to 10.21 mg/g (dw) of hyoscyamine, which was about 1.5-fold higher than in the wild type plants. To our knowledge, this is the first report to demonstrate the production of tropane alkaloids in hairy roots of A. acutangulus.  相似文献   

20.
A new amino acid derivative has been found in primary and secondary sunflower crown gall tissue cultures and in fresh crown gall tumors from sunflower plants wound-inoculated with Agrobacterium tumefaciens B6. Normal plant tissue does not contain detectable levels of the compound. Radioactive labeling and cochromatography experiments strongly suggest that the natural derivative is identical to synthetic N2-(1-carboxyethyl)-L-histidine (histopine). Crown gall tissue cultures contain 1 μmole of histopine/20 g fresh weight. A. tumefaciens strain B6, but not strain C58, can utilize natural histopine and incorporate the products into macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号