首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive 3H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA3 and Ca1 of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in 3H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhanced sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.  相似文献   

2.
The sensitivity to intracerebroventricular morphine-induced convulsions was determined in members of the severe seizure (GEPR-9) and moderate seizure (GEPR-3) colonies of genetically epilepsy-prone rats as well as in non-epileptic control rats. GEPR-9s were more sensitive to morphine-induced wet-dog shakes, rearing with bilateral forelimb clonus and generalized clonus than controls of GEPR-3s. GEPR-3s were less sensitive to morphine-induced wet-dog shakes and rearing with bilateral forelimb clonus than controls. Both high and extremely low doses of morphine in GEPR-9s elicited tonic extensor convulsions resembling the characteristic sound-induced convulsion of GEPR-9s. The results suggest that opiotergic systems may contribute to the pathophysiology of the seizure-prone condition in GEPR-9s. Further, differences in responsiveness of opiotergic systems in GEPR-3s and GEPR-9s may partially account for differences in seizure severity in the characteristic sound-induced seizures of these two types of GEPRs.  相似文献   

3.
The Genetically Epilepsy-Prone Rat (GEPR) is rapidly gaining support as a model of epilepsy. In addition to a marked sensitivity to both sound-induced and hyperthermic seizures, GEPRs exhibit unusual sensitivity to a number of seizure-provoking modalities, including various forms of electrical and chemical stimulation. The existence of a moderate seizure colony (GEPR-3) and a severe seizure colony (GEPR-9) allows pathophysiological studies of seizure susceptibility and severity. The consistency of seizures within each colony allows for comparisons in seizure naive GEPRs and seizure experienced GEPRs. The consistent seizure responses of the GEPR are also ideal for the testing of anticonvulsant drugs. Further, the relative potencies of anticonvulsant drugs between the two colonies of GEPRs predict the clinical efficacies of traditional antiepileptic drugs and may be able to predict novel anticonvulsants.  相似文献   

4.
Seizure predisposition in Genetically Epilepsy-Prone Rats (GEPRs) is characterized by abnormal sensitivity to a number of seizure provoking stimuli. The GEPR model is composed of two independently derived colonies with each exhibiting a characteristic convulsive pattern. In response to a standardized sound stimulus, GEPR-3s exhibit moderate or clonic convulsions while GEPR-9s exhibit more severe tonic extensor convulsions. In order to further characterize the neurochemical abnormalities that underlie seizure predisposition in GEPRs, the current study examined serotonin concentrations in 14 discrete brain areas of controls, GEPR-3s and GEPR-9s. In all areas examined, serotonin concentrations were lower in either one or both GEPR types than in seizure resistant controls. In 6 of the 14 areas both GEPR-3s and GEPR-9s had levels significantly lower than controls. In an additional 7 areas GEPRs had serotonin concentrations of similar magnitude which were significantly lower than control when the GEPR values were combined. In cerebellum, GEPR-3s had significantly lower serotonin concentration than either controls of GEPR-9s while in the striatum, GEPR-9s had significantly lower serotonin levels than either GEPR-3s or controls. In summary, GEPRs have widespread deficits in serotonin concentration and that these abnormalities appear to contribute to the seizure predisposition that characterizes these animals.  相似文献   

5.
Seizure predisposition in the Genetically Epilepsy-Prone Rat (GEPR) is at least partially dependent on central nervous system noradrenergic deficits. We have previously shown that moderate seizure GEPRs (GEPR-3) experience an increase in seizure severity after receiving Ro 4-1284, a monoamine vesicle inactivating drug. We are now reporting the effect of this drug on severe seizure GEPRs (GEPR-9). Motives for this study were: (a) to determine the effects of further depletion of innately deficient monoaminergic stores on seizure latencies and (b) to investigate whether a previously documented seizure severity difference between the sexes is related to the defective monoaminergic system in these subjects. GEPR-9s with known seizure history were tested for latency to onset of running phase and convulsion 45 minutes after Ro 4-1284 or saline administration. Brain norepinephrine levels were also determined. Ro 4-1284 caused severe depletion of monoamines in all brain areas assayed in both sexes of GEPR-9s and also caused a reduction in the latencies for onset of running and convulsion. The drug-induced norepinephrine depletion across the brain areas surveyed was significantly greater in females than in their male littermates. These observations prompt us to postulate that noradrenergic neurons in female GEPR-9s are functionally different from those in males and that this difference is detected in the differential effectiveness of Ro 4-1284 between the two sexes. Also, the influence of gonadal hormones on seizure predisposition and on the neurochemical actions of Ro 4-1284 may be different in GEPR-9 males and females.  相似文献   

6.
The kindling effect is an experimental model of epilepsy which results from an intermittent application of focal electrical stimulations to certain regions of the brain. Generalized seizures are usually obtained after about fifteen stimulations of amygdala in the rat. We studied the kindling effect in hyperbaric-hyperoxic conditions. Eleven Wistar rats were stimulated daily in a caisson and all stimulations were delivered after 30 min of diving at 3 ATA of air. Diving inhibited kindling in half animals. In the others, which all presented generalised convulsions, diving produced a reduction in seizure duration, especially during the generalisation phase.  相似文献   

7.
Anticonvulsant drugs and the genetically epilepsy-prone rat   总被引:6,自引:0,他引:6  
Anticonvulsant drugs were evaluated in members of two colonies of genetically epilepsy-prone rats (GEPR). Virtually all of the animals in the first colony experience a wild running fit that terminates in a generalized clonic convulsion when they are stimulated by sound. According to our convulsion intensity scoring system, these animals have an audiogenic response score (ARS) of 3 and the colony is designated the GEPR-3 colony. In the second colony, more than 95% of the animals experience a wild running phase terminating in a tonic extensor convulsion when they are stimulated by sound. That is, they have an ARS of 9 and the colony is designated the GEPR-9 colony. All of the established antiepileptic drugs that were tested produced anticonvulsant effects in the GEPR. Three tricyclic antidepressant agents acted as anticonvulsants in doses substantially lower than the toxic doses that produced spontaneous convulsions. Two of the established anticonvulsants, phenobarbital and ethosuximide, produced anticonvulsant effects in very similar doses in members of GEPR-3 and GEPR-9 colonies. Valproic acid produced an anticonvulsant effect in GEPR-3 in significantly lower doses than in GEPR-9. Carbamazepine, phenytoin, imipramine, amitriptyline, and desipramine produced anticonvulsant effects in essentially equimolar doses and in each case the protective dose was significantly lower in GEPR-9 than in GEPR-3 colonies. GEPR did not experience the convulsive effects of imipramine, amitriptyline, and desipramine at lower doses than did control animals. Thus, these epilepsy-prone animals are no more likely to experience convulsions in response to overdose of one of these three drugs than are nonepileptic subjects.  相似文献   

8.
Adult male and female genetically seizure-prone rats were assessed for sound-induced seizures. Heterozygous control groups were compared with mild seizure (designated GEPR 3) and severe seizure animals (GEPR 9). Groups of animals were killed and crude synaptosome fractions (P2) prepared from freshly dissected cerebral cortices. Binding sites for gamma-aminobutyric acid (GABA) were assessed by [3H]-muscimol in the absence or presence of excess GABA and/or pentobarbital. Binding sites for benzodiazepines were assessed by [3H]-flunitrazepam in the presence or absence of clonazepam. Compared to controls, GEPR 3 animals had a modest increase and GEPR 9 animals a larger increase in Bmax for both high and low affinity GABA sites, with no change in Kd. Chloride-dependent, barbiturate-enhanced GABA binding (increased Bmax) was observed in all conditions and groups. Likewise benzodiazepine binding (Bmax) increased slightly in GEPR 9 animals. There were no observed changes in binding sites for a survey of biogenic amines. Seizure-prone animals appear to have compensatory denervation-like supersensitivity for their most prominent inhibitory receptor, which may or may not be linked to the seizure event.  相似文献   

9.
Repeated electrical stimulations of the olfactory bulb led to the progressive development of a generalized epilepsy (kindling effect). One week after the last stimulation eliciting a stage 5 seizure, diazepam-(3H) binding was studied in olfactory bulb-kindled rats. Numbers of benzodiazepine receptors were increased in kindled olfactory bulb and amygdala. No significant change was observed in hippocampus. This modification could be considered as a response of the inhibitory mechanisms to repeated seizures which is insufficient to counteract the installation of the kindling effect.  相似文献   

10.
Evidence of immunosuppression in the genetically epilepsy-prone rat   总被引:2,自引:0,他引:2  
Immune system function was examined in the genetically epilepsy prone (GEPR-9) rat and non-epileptic Sprague-Dawley control rats. Significant decreases in direct and indirect plaque-forming cell responses were observed in GEPR-9 rats immunized with sheep erythrocytes. Serum levels of IgM were also decreased in non-immunized GEPR-9 rats, providing additional evidence of immunosuppression. However, total serum levels of IgG were three-fold greater in GEPR-9 rats compared to control. These results suggest that the nature of the immune system deficit in the GEPR-9 is complex and may involve an active T-cell population stimulating an overproduction of IgG leading to a diminished capacity to respond to new antigen challenges. This immunological defect may underlie the enhanced susceptibility of GEPR-9 rats to infectious agents. The specific cause of this immune dysfunction is not known. Possible etiological factors include a breakdown in the communication between cells within the immune system or an alteration of neuroendocrine modulation of immune responses.  相似文献   

11.
The effect of chronic para-chlorphenylalanine (PCPA) treatment was investigated in two different seizure models: the pentylenetetrazole (PTX) seizure model in rats and the kindled seizures from rabbit amygdala. Chronic PCPA treatment (21 days) in male albino rats caused a progressive decrease in the 5-hydroxytryptamine (5-HT) brain level between the 1st and the 7th day of PCPA administration. Then the 5-HT level remained low until the end of the experiment. On the background of the low 5-HT level there occurred changes in PTZ convulsive reactions: after the 3rd day of PCPA treatment the convulsive-seizure reactivity was significantly increased and after the 7th, 14th and 21st day the increased seizure reactivity performed only as a tendency, though the 5-HT level was still low. Chronic PCPA treatment (16 days) of rabbits delayed the development of the behavioural kindled seizures. This treatment also reduced the duration of bioelectrical seizures until the 8th day of treatment, especially in the motor cortex. The observed different effect of the chronic PCPA treatment in both seizure models: pentylenetetrazole in rats and kindling in rabbits might be explained by essential differences in the origin and mechanisms of development of the two seizure models.  相似文献   

12.
Temporal lobe epilepsy (TLE) is the most common form of drug resistant epilepsy. Current treatment is symptomatic, suppressing seizures, but has no disease modifying effect on epileptogenesis. We examined the effects of Z944, a potent T-type calcium channel antagonist, as an anti-seizure agent and against the progression of kindling in the amygdala kindling model of TLE. The anti-seizure efficacy of Z944 (5mg/kg, 10mg/kg, 30mg/kg and 100mg/kg) was assessed in fully kindled rats (5 class V seizures) as compared to vehicle, ethosuximide (ETX, 100mg/kg) and carbamazepine (30mg/kg). Each animal received the seven treatments in a randomised manner. Seizure class and duration elicited by six post-drug stimulations was determined. To investigate for effects in delaying the progression of kindling, naive animals received Z944 (30mg/kg), ETX (100mg/kg) or vehicle 30-minutes prior to each kindling stimulation up to a maximum of 30 stimulations, with seizure class and duration recorded after each stimulation. At the completion of drug treatment, CaV3.1, CaV3.2 and CaV3.3 mRNA expression levels were assessed in the hippocampus and amygdala using qPCR. Z944 was not effective at suppressing seizures in fully kindled rats compared to vehicle. Animals receiving Z944 required significantly more stimulations to evoke a class III (p<0.05), IV (p<0.01) or V (p<0.0001) seizure, and to reach a fully kindled state (p<0.01), than animals receiving vehicle. There was no significant difference in the mRNA expression of the T-type Ca2+ channels in the hippocampus or amygdala. Our results show that selectively targeting T-type Ca2+ channels with Z944 inhibits the progression of amygdala kindling. This could be a potential for a new therapeutic intervention to mitigate the development and progression of epilepsy.  相似文献   

13.
Benzodiazepine receptor binding was examined in rats at 3 stages of amygdaloid kindling (i.e., initial afterdischarge, Stage 3 and Stage 5) immediately or 24 hr after seizure. 3H-diazepam binding site density (Bmax) was significantly increased 24 hr after Stage 3 and Stage 5 kindled seizures in the hippocampus but not in the amygdala. There were no significant differences in the dissociation constants (KD) between kindled and control rats at any time point examined for either brain region. These results demonstrate that changes in benzodiazepine binding are observed with partial kindled seizures (i.e., Stage 3), indicating that generalized seizures are not prerequisite to increased benzodiazepine receptor site density.  相似文献   

14.
Pharmacological studies demonstrate a reciprocal relationship between both noradrenergic and serotonergic transmission and audiogenic seizure severity and susceptibility in the genetically epilepsy-prone rat (GEPR). In contrast, drug-induced changes in the neurochemical indices of dopaminergic activity do not result in alterations in seizure severity. These pharmacological investigations led to the hypothesis that both noradrenergic and serotonergic neurons are capable of regulating seizure severity in the GEPR. Pharmacological investigations also provided evidence that monoaminergic neurons serve as determinants of seizure susceptibility in these epileptic animals. The GEPR is susceptible to environmentally-induced seizures which cannot be precipitated in neurologically normal subjects. Drug studies suggest that monoaminergic decrements serve as one set of susceptibility determinants. However, non-monoaminergic abnormalities also play important roles in the seizure predisposition which characterizes the GEPR. Pathophysiological studies have confirmed and extended the concepts generated by the pharmacological investigations. Noradrenergic and serotonergic deficits do indeed characterize the seizure naive state of the GEPR. These studies have provided a basis for tentative identification of areas of the brain in which monoaminergic abnormalities regulate seizure severity and susceptibility. Monoaminergic defects in some areas such as the thalamus may regulate both susceptibility and severity. In other areas, defects may regulate only severity or susceptibility. In the striatum, noradrenergic defects do not appear to be present and probably are not determinants of the epileptic state of the GEPR.  相似文献   

15.
It has been shown in chronic experiments on rats that two periods of EEG and behavioral alterations may be distinguished during korazol kindling. The bursts of slow waves and spike-wave activity appear on the EEG during the first period as response to subthreshold doses of korazol, which is accompanied behaviorally by standing and myoclonuses. The second period is characterized by the appearance of high-frequency polymorphous generalized seizure discharges on the EEG accompanied by clonicotonic seizures. Interictal and ictal epileptic discharges appear primarily in the hippocamp and then in other brain structures during the development of korazol kindling. The conclusion is made that the hippocamp plays the role of a pathological determinant structure in the development of chronic brain epileptization during korazol kindling.  相似文献   

16.
Summary To investigate how GABAergic function affects seizure development, the effects of a GABA antagonist, bicuculline, on neocortical and hippocampal kindling were examined in chronically prepared rabbits. Kindling-inducing stimulations consisted of stimulus trains repeated at 5-min interstimulus intervals to produce so-called rapid kindling. The changes in after-discharge (AD) durations induced by each of 15 trials of stimulus trains per session were compared before and 30 min after i.p. injection of bicuculline solution (2 mg/kg) in each of three kindling groups consisting of 5 rabbits each, i.e. visual cortical, motor cortical and hippocampal kindling groups. In the visual cortex and to a less extent, the motor cortex kindling groups, the AD durations were shortened after bicuculline injection and did not show the progressive prolongation seen before the injection. In contrast, the hippocampal kindling group showed a further marked prolongation of the AD durations after the injection. The bicuculline-induced blockade of neocortical kindling suggests facilitative GABAergic action on seizure development, while the drug-induced enhancement of hippocampal kindling reflects the known inhibitory GABAergic action.  相似文献   

17.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

18.
The seizure susceptibility of amygdaloid complex in rat was investigated. In piriform cortex and cortical nucleus of amygdaloid complex the structural and electrophysiological rostro-caudal differences were found (using relative spectral densities EEG, seizure thresholds, electrical kindling rate). The fundamental dependence of severity of motor seizures from structural (nuclear or cortical) organization of stimulating area was shown. There were more of limbic stages while stimulating anterior and posterior cortical nuclei, and there were more generalized stages while stimulating piriform and periamygdaloid cortex. Using the model of electrical kindling anticonvulsant effects of Sacricin were demonstrated. Sacricin is one of the compounds of polycarbonic acid. Sacricin has fully coped the process of secondary generalization of epileptic seizures.  相似文献   

19.
Neuropeptide Y inhibits neuronal excitability and seizures in various experimental models. This peptide delays kindling epileptogenesis but the receptors involved in this action are unknown. We have studied the role of Y5 receptors in kindling using the selective antagonist GW438014A (IC50=210 nM), a small heterocycle molecule that crosses the blood-brain barrier, and the selective peptide agonist Ala31Aib34 NPY (IC50=6.0 nM). Intraperitoneal injection of GW438014A (10 mg/kg), 30 min before the beginning of a rapid-kindling protocol, significantly accelerated the rate of kindling acquisition as compared to vehicle-injected rats. Thus, the number of electrical stimuli required to reach stages 3 and 4-5 of kindling were reduced by 50% and 25%, respectively. The average afterdischarge duration in the stimulated hippocampus was prolonged by 2-fold. Conversely, kindling rate was delayed by intracerebroventricular administration of 24 nmol Ala31Aib32 NPY. Thus, the number of stimuli necessary to reach stages 2 and 3 of kindling was increased by 3- and 4-fold, respectively. During the stimulation protocol (40 stimuli) none of the rats treated with the Y5 agonist showed stages 4-5 seizures. Twenty-four hours after the last kindling stimulation, thus during the re-test session, Y5 agonist- or antagonist-treated rats had stages 4-5 seizures as their controls. In rats treated with both the antagonist and the agonist, kindling rate was similar to vehicle-injected rats. These data indicate that Y5 receptors mediate inhibitory effects of NPY in kindling and display anticonvulsant rather then antiepileptogenic effects upon agonist stimulation.  相似文献   

20.
The pharmacological kindling was induced in rats by corazol repeated injections in subthreshold doses. The peptide-containing fraction was emitted from animal brains by the help of hot acetic acid on the stage of generalized clonic-tonic seizures development. Intraperitoneal injection of brain extracts of kindled rats significantly increased corazol and picrotoxin induced seizure severity in mice. The effect was removed by preliminary injection of naloxone or by preventive incubation of extracts with pronase. Intraventricular injection of extracts to intact rats increased the seizure severity which was provoked by corazol and in high doses induced in rats generalized seizure reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号