首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Against memory systems   总被引:9,自引:0,他引:9  
The medial temporal lobe is indispensable for normal memory processing in both human and non-human primates, as is shown by the fact that large lesions in it produce a severe impairment in the acquisition of new memories. The widely accepted inference from this observation is that the medial temporal cortex, including the hippocampal, entorhinal and perirhinal cortex, contains a memory system or multiple memory systems, which are specialized for the acquisition and storage of memories. Nevertheless, there are some strong arguments against this idea: medial temporal lesions produce amnesia by disconnecting the entire temporal cortex from neuromodulatory afferents arising in the brainstem and basal forebrain, not by removing cortex; the temporal cortex is essential for perception as well as for memory; and response properties of temporal cortical neurons make it impossible that some kinds of memory trace could be stored in the temporal lobe. All cortex is plastic, and it is possible that the same rules of plasticity apply to all cortical areas; therefore, memory traces are stored in widespread cortical areas rather than in a specialized memory system restricted to the temporal lobe. Among these areas, the prefrontal cortex has an important role in learning and memory, but is best understood as an area with no specialization of function.  相似文献   

2.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

3.
药物成瘾者戒断后的持久复吸是治疗药物成瘾的难点.成瘾者出现持续复吸的重要原因是由于成瘾记忆的长期存在.成瘾物质的长期反复使用导致前额叶-边缘多巴胺系统结构和功能的适应性改变,这种改变是成瘾记忆形成的神经基础.本文从学习记忆的角度来理解成瘾形成,介绍了成瘾记忆的初始形成阶段、习惯化阶段和成瘾行为维持阶段及其相应的神经基础.回顾了近年来成瘾记忆的临床干预方法,包括消退干预方法、增强消退干预的多情境干预方法,以及直接干预消除成瘾记忆的记忆再巩固干预方法,并总结了虚拟现实、神经调控技术在成瘾记忆干预中的应用.对记忆再巩固干预方法与虚拟现实、神经调控技术相结合干预成瘾记忆进行展望,为药物成瘾的临床干预和治疗提供了新方法、新思路.  相似文献   

4.
The present study investigated whether 5-HT(2C) receptors in the ventrotegmental area and prefrontal cortex regulate basal and stimulus-evoked dopamine release in the prefrontal cortex. Using the in vivo microdialysis technique in conscious rats, we studied the effect of a selective 5-HT(2C) receptor agonist, Ro60-0175, on basal and immobilization stress-induced dopamine release in the prefrontal cortex. Ro60-0175 intraperitoneally (2.5 mg/kg) and into the ventrotegmental area (10 microg/0.5 microL) completely antagonized the effect of stress on extracellular dopamine without altering basal levels. Infusion of 10 microm Ro60-0175 through the cortical probe had no significant effect on basal and stress-induced dopamine release. SB242084 (10 mg/kg), a selective antagonist of 5-HT(2C) receptors, significantly increased basal extracellular dopamine and completely prevented the effect of intraperitoneal and intraventrotegmental Ro60-0175 on the stress-induced rise of extracellular dopamine, but had no effect itself in stressed rats. The results show that Ro60-0175 suppresses cortical dopamine release induced by immobilization stress through the stimulation of 5-HT(2C) receptors in the ventrotegmental area. While confirming that endogenous 5-HT acting on 5-HT(2C) receptors tonically inhibit basal dopamine release in the prefrontal cortex, the present findings suggest that the stimulation of 5-HT(2C) receptors with an exogenous agonist preferentially inhibit stimulated release.  相似文献   

5.
Dynamics of population code for working memory in the prefrontal cortex   总被引:8,自引:0,他引:8  
Baeg EH  Kim YB  Huh K  Mook-Jung I  Kim HT  Jung MW 《Neuron》2003,40(1):177-188
Some neurons (delay cells) in the prefrontal cortex elevate their activities throughout the time period during which the animal is required to remember past events and prepare future behavior, suggesting that working memory is mediated by continuous neural activity. It is unknown, however, how working memory is represented within a population of prefrontal cortical neurons. We recorded from neuronal ensembles in the prefrontal cortex as rats learned a new delayed alternation task. Ensemble activities changed in parallel with behavioral learning so that they increasingly allowed correct decoding of previous and future goal choices. In well-trained rats, considerable decoding was possible based on only a few neurons and after removing continuously active delay cells. These results show that neural activity in the prefrontal cortex changes dynamically during new task learning so that working memory is robustly represented and that working memory can be mediated by sequential activation of different neural populations.  相似文献   

6.
A mechanism of attention is proposed according to which its influence on visual processing is switched on by release of dopamine into the striatum. A dopamine release during involuntary attention is promoted by visual activation of striatonigral cells via the thalamus and subsequent disinhibition through the basal ganglia of the superior colliculus. A dopamine release during voluntary attention is promoted by activation of prefrontal cortex. The strengthening of responses of neocortical neurons to attended stimulus, and suppression of responses to other stimuli is the result of opposite modulatory action of dopamine on the efficacy of strong and weak corticostriatal inputs. This leads to changes in the output basal ganglia signals ("attentional filter") that exert disinhibitory and inhibitory influence (via the thalamus) on neocortical cells that initially were strongly and weakly activated by a stimulus, respectively. From proposed mechanism follows, that attention modulates only those components of responses of cortical neurons which latency exceeds the latency of reactions of dopaminergic cells (80-100 ms).  相似文献   

7.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

8.
The prefrontal cortex (PFC) has long been thought to serve as an 'executive' that controls the selection of actions and cognitive functions more generally. However, the mechanistic basis of this executive function has not been clearly specified often amounting to a homunculus. This paper reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon existing mechanistic models of the basal ganglia (BG) and frontal systems known to play a critical role in motor control and action selection, where the BG provide a 'Go' versus 'NoGo' modulation of frontal action representations. In our model, the BG modulate working memory representations in prefrontal areas to support more abstract executive functions. We have developed a computational model of this system that is capable of developing human-like performance on working memory and executive control tasks through trial-and-error learning. This learning is based on reinforcement learning mechanisms associated with the midbrain dopaminergic system and its activation via the BG and amygdala. Finally, we briefly describe various empirical tests of this framework.  相似文献   

9.
The mechanism of involvement of the basal ganglia in processing of visual information on the basis of dopamine-dependent modulation of efficacy of synaptic transmission in interconnected parallel associative and limbic loops (cortex--basal ganglia--thalamus--cortex) is proposed. Each loop consists of one of the visual or prefrontal cortical areas connected with the thalamic nucleus and corresponding loci in different nuclei of the basal ganglia. Circulation of activity in such a loop provides reentrance of information into the thalamus and neocortex. Dopamine releasing in response to a visual stimulus oppositely modulates the efficacy of "strong" and "weak" corticostriatal inputs. Subsequent reorganization of activity in the loop leads to a disinhibition (inhibition) of activity of those cortical neurons that were "strongly" ("weakly)" excited by the visual stimulus simultaneously with activation of dopaminergic cells. A selected neuronal pattern in each cortical area represents a property of the visual stimulus processed by this area. Excitation of dopaminergic cells by the visual stimulus via the superior colliculi requires parallel activation of a disinhibitory input to the superior colliculi via the thalamus and a "direct" pathway through the basal ganglia. The prefrontal cortex excited by the visual stimulus via the mediodorsal thalamic nucleus performs a top-down control over the dopaminergic cell activity, supervising simultaneous dopamine release in different striatal loci and thus promotes the interconnected selection of neuronal representations of individual properties of the visual stimulus and their binding in an integrated image.  相似文献   

10.
Silkis I 《Bio Systems》2007,89(1-3):227-235
The goal of the present work was to define the mechanisms underlying the contribution of sensory and limbic cortico-basal ganglia-thalamocortical loops to visual processing and its attentional modulation. We proposed that visual processing is promoted by dopamine-dependent long-term modifications of synaptic transmission in the basal ganglia that favour a selection of neocortical patterns representing a visual stimulus. This selection is the result of the opposite sign of modulation of strong and weak cortico-basal ganglia inputs and subsequent activity reorganization in each loop. Reorganization leads to disinhibition/inhibition of cortical neurons strongly/weakly excited by stimulus during dopamine release. Recruitment of the thalamo-basal ganglia-collicular pathway is proposed to be necessary for stimulus-evoked dopamine release that underlies bottom-up attentional effects. Visual excitation of the prefrontal cortex and hippocampus (via the thalamus), their cooperation in control of the basal ganglia and dopaminergic cell firing, and simultaneous modulation of activity in diverse cortico-basal ganglia-thalamocortical loops is proposed to underlie top-down attentional effects. It follows from our model that only those components of cortical responses can be modulated by attention, whose onset exceeds the latency of visual responses of dopaminergic cells (50-110 ms). This and other consequences of the model are in accordance with known experimental data.  相似文献   

11.
Delay-related sustained activity in the prefrontal cortex of primates, a neurological analogue of working memory, has been proposed to arise from synaptic interactions in local cortical circuits. The implication is that memories are coded by spatially localized foci of sustained activity. We investigate the mechanisms by which sustained foci are initiated, maintained, and extinguished by excitation in networks of Hodgkin-Huxley neurons coupled with biophysical spatially structured synaptic connections. For networks with a balance between excitation and inhibition, a localized transient stimulus robustly initiates a localized focus of activity. The activity is then maintained by recurrent excitatory AMPA-like synapses. We find that to maintain the focus, the firing must be asynchronous. Consequently, inducing transient synchrony through an excitatory stimulus extinguishes the sustained activity. Such a monosynaptic excitatory turn-off mechanism is compatible with the working memory being wiped clean by an efferent copy of the motor command. The activity that codes working memories may be structured so that the motor command is both the read-out and a direct clearing signal. We show examples of data that is compatible with our theory.  相似文献   

12.
Increased activity of D2 receptors (D2Rs) in the striatum has been linked to the pathophysiology of schizophrenia. To determine directly the behavioral and physiological consequences of increased D2R function in the striatum, we generated mice with reversibly increased levels of D2Rs restricted to the striatum. D2 transgenic mice exhibit selective cognitive impairments in working memory tasks and behavioral flexibility without more general cognitive deficits. The deficit in the working memory task persists even after the transgene has been switched off, indicating that it results not from continued overexpression of D2Rs but from excess expression during development. To determine the effects that may mediate the observed cognitive deficits, we analyzed the prefrontal cortex, the brain structure mainly associated with working memory. We found that D2R overexpression in the striatum impacts dopamine levels, rates of dopamine turnover, and activation of D1 receptors in the prefrontal cortex, measures that are critical for working memory.  相似文献   

13.
The neural basis of episodic memory: evidence from functional neuroimaging   总被引:11,自引:0,他引:11  
We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.  相似文献   

14.
The effect of lesions of the catecholamine nerve terminals in the medial prefrontal cortex of the rat on neurotransmitter mechanisms within the basal ganglia has been investigated. Bilateral 6-hydroxydopamine lesions were stereotaxically placed in the dopamine-rich (DA) area of th frontal cortex. Animals were pretreated with desmethylimipramine to block the uptake of neurotoxin into noradrenergic (NA) terminals and to make it more selective for DA terminals. The lesion produced a selective reduction of both NA and DA from the medial prefrontal cortex, a result related to falls in tyrosine hydroxylase activity at this site. Lesioned animals showed enhanced DA turnover and utilisation in striatal and limbic regions. There was no change in subcortical tyrosine hydroxylase activity. In addition there were significant falls in other putative neurotransmitters within basal sites, including 5-hydroxytryptamine and GABA. Decreased activity of the neurotransmitter-synthesizing enzyme glutamate decarboxylase and choline acetyltransferase was also recorded in certain regions of the basal ganglia. The results suggest that frontal cortical catecholamine systems may serve to regulate various neurotransmitter mechanisms in the basal ganglia.  相似文献   

15.
It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.  相似文献   

16.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

17.
JM Scimeca  D Badre 《Neuron》2012,75(3):380-392
Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning).  相似文献   

18.
The major anatomical characteristics of the main axis of the basal ganglia are: (1) Numerical reduction in the number of neurons across layers of the feed-forward network, (2) lateral inhibitory connections within the layers, and (3) neuro-modulatory effects of dopamine and acetylcholine, both on the basal ganglia neurons and on the efficacy of information transmission along the basal ganglia axis. We recorded the simultaneous activity of neurons in the output stages of the basal ganglia as well as the activity of dopaminergic and cholinergic neurons during the performance of a probability decision-making task. We found that the functional messages of the cholinergic and dopaminergic neurons differ, and that the cholinergic message is less specific than that of the dopaminergic neurons. The output stage of the basal ganglia showed uncorrelated neuronal activity. We conclude that despite the huge numerical reduction from the cortex to the output nuclei of the basal ganglia, the activity of these nuclei represents an optimally compressed (uncorrelated) version of distinctive features of cortical information.  相似文献   

19.
Identifying the molecular alterations that underlie the pathophysiology of critical clinical features of schizophrenia is an essential step in the rational development of new therapeutic interventions for this devastating illness. Cognitive deficits, such as the impairments in working memory that arise from dysfunction of the dorsolateral prefrontal cortex, are a major determinant of functional outcome in schizophrenia. Here we consider the contributions of disturbances in glutamate, dopamine and GABA neurotransmission to the pathophysiology of working memory impairments in schizophrenia, suggest a cascade of molecular events that might link these disturbances, and argue that the molecular alterations most proximal to the pathophysiology of prefrontal dysfunction offer the most promise as targets for new drug development.  相似文献   

20.
海马-前额叶神经回路与工作记忆   总被引:1,自引:0,他引:1  
学习和记忆是神经科学研究的热点。已证实大脑中的海马、前额叶和海马−前额叶回路均参与工作记忆功能。本文对海马−前额叶回路的解剖和生理特性以及海马、前额叶和海马−前额叶回路在工作记忆中的作用的研究进展做一概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号