共查询到20条相似文献,搜索用时 0 毫秒
1.
S J Wieland Q H Gong R H Chou L H Brent 《The Journal of biological chemistry》1992,267(22):15426-15431
Cells of the human promyelocytic cell line HL-60 can be controllably induced to terminally differentiate into either granulocytes or monocyte/macrophages. HL-60 promyelocytes and terminally differentiated macrophages express a K(+)-selective ion channel which is activated by intracellular free Ca2+ concentrations above 10(-7) M. Because of its voltage independence, this channel can be distinguished from the voltage- and Ca(2+)-activated family of outward-rectifying channels. The channel is selective for K+ against Na+ and is blocked by Ba2+, thus it may be similar to the Ca(2+)-activated K+ channel previously described in human macrophages. In its sensitivity to block by charybdotoxin, this channel also resembles a Ca(2+)-activated K+ channel of lymphocytes, which plays a role in activation-dependent hyperpolarization. In contrast to promyelocytes and macrophages, functional expression of the Ca(2+)-activated K+ channel is suppressed to nearly undetectable levels in granulocytes derived from HL-60 cells by retinoic acid-induced differentiation. These data suggest that signals which produce elevation of intracellular Ca2+ will hyperpolarize promyelocytes and differentiated macrophages by activating this conductance; however, signals which elevate free Ca2+ in granulocytes must act on other effectors, which may produce a different final influence on membrane potential. 相似文献
2.
Wanderlust kinetics and variable Ca(2+)-sensitivity of Drosophila, a large conductance Ca(2+)-activated K+ channel, expressed in oocytes.
下载免费PDF全文

Cloned large conductance Ca(2+)-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5 mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels. 相似文献
3.
4.
The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore. 相似文献
5.
Soto MA González C Lissi E Vergara C Latorre R 《American journal of physiology. Cell physiology》2002,282(3):C461-C471
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o). 相似文献
6.
Maingret F Coste B Hao J Giamarchi A Allen D Crest M Litchfield DW Adelman JP Delmas P 《Neuron》2008,59(3):439-449
Small-conductance Ca2+-activated K+ (SK) channels are widely expressed in neuronal tissues where they underlie post-spike hyperpolarizations, regulate spike-frequency adaptation, and shape synaptic responses. SK channels constitutively interact with calmodulin (CaM), which serves as Ca2+ sensor, and with protein kinase CK2 and protein phosphatase 2A, which modulate their Ca2+ gating. By recording coupled activities of Ca2+ and SK2 channels, we showed that SK2 channels can be inhibited by neurotransmitters independently of changes in the activity of the priming Ca2+ channels. This inhibition involvesSK2-associated CK2 and results from a 3-fold reduction in the Ca2+ sensitivity of channel gating. CK2phosphorylated SK2-bound CaM but not KCNQ2-bound CaM, thereby selectively regulating SK2 channels. We extended these observations to sensory neurons by showing that noradrenaline inhibits SK current and increases neuronal excitability in aCK2-dependent fashion. Hence, neurotransmitter-initiated signaling cascades can dynamically regulate Ca2+ sensitivity of SK channels and directly influence somatic excitability. 相似文献
7.
8.
Stimulus-dependent control of inositol 1,4,5-trisphosphate-induced Ca(2+) oscillation frequency by the endoplasmic reticulum Ca(2+)-ATPase
下载免费PDF全文

In many cell types, receptor stimulation evokes cytosolic calcium oscillations with a frequency that depends on agonist dose. Previous studies demonstrated controversial effects of changing the activity of the endoplasmic reticulum Ca(2+)-ATPase upon the frequency of oscillations. By numerical simulations, we found that the model of De Young and Keizer (J. Keizer and G.W. De Young, 1994, J. Theor. Biol. 166: 431-442), unlike other models, can explain the observed discrepancies, assuming that the different experiments were performed at different stimulus levels. According to model predictions, partial inhibition of internal calcium pumps is expected to increase frequency at low stimulus strength and should have an opposite effect at strong stimuli. Similar results were obtained using an analytical estimation of oscillation period, based on calcium-dependent channel activation and inactivation. In experiments on HeLa cells, 4 nM thapsigargin increased the frequency of calcium oscillations induced by 1 and 2.5 microM histamine but had no effect on supramaximally stimulated cells. In HEp-2 cells, 2 nM thapsigargin slowed down the rapid, ATP-induced oscillations. Our results suggest that in the investigated cell types, the De Young-Keizer model based on inositol 1,4,5-trisphosphate-dependent calcium-induced calcium release can properly describe intracellular calcium oscillations. 相似文献
9.
Proton modulation of a Ca(2+)-activated K+ channel from rat skeletal muscle incorporated into planar bilayers
下载免费PDF全文

The effect of pH on the activation of a Ca-activated K+ [K(Ca)] channel from rat skeletal muscle incorporated into planar lipid bilayers was studied. Experiments were done at different intracellular Ca2+ and proton concentrations. Changes in pH modified channel kinetics only from the Ca-sensitive face of the channel. At constant Ca2+ concentration, intracellular acidification induced a decrease in the open probability (Po) and a shift of the channel activation curves toward the right along the voltage axis. The displacement was 23.5 mV per pH unit. This displacement was due to a change in the half saturation voltage (Vo) and not to a change in channel voltage dependence. The shifts in Vo induced by protons appeared to be independent of Ca2+ concentration. The slope of the Hill plot of the open-closed equilibrium vs. pH was close to one, suggesting that a minimum of one proton is involved in the proton-driven channel closing reaction. The change in Po with variations in pH was due to both a decrease in the mean open time (To) and an increase in the mean closed time (Tc). At constant voltage, the mean open time of the channel was a linear function of [Ca2+] and the mean closed time was a linear function of 1/[Ca2+]2. Changes in the internal pH modified the slope, but not the intercept of the linear relations To vs. [Ca2+] and Tc vs. 1/[Ca2+]2. On the basis of these results an economical kinetic model of the effect of pH on this channel is proposed. It is concluded that protons do not affect the open-closed reaction, but rather weaken Ca2+ binding to all the conformational states of the channel. Moreover, competitive models in which Ca2+ and H+ cannot bind to the same open or closed state are inconsistent with the data. 相似文献
10.
Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. 总被引:4,自引:0,他引:4
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel. 相似文献
11.
2,5-Di-(tert-butyl)-1,4-benzohydroquinone mobilizes inositol 1,4,5-trisphosphate-sensitive and -insensitive Ca2+ stores 总被引:3,自引:0,他引:3
In permeabilized rat hepatocytes a maximal concentration (25 microM) of 2,5-di-(tert-butyl)-1,4-benzohydroquineone (tBuBHQ) mobilized 70% of sequestere Ca2+ and a half-maximal effect was produced by 1.7 microM tBuBHQ. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) stimulated release of about 40% of the intracellular Ca2+ stores. Combined applications of a range of tBuBHQ concentrations with a maximal concentration of Ins(1,4,5)P3 demonstrated that tBuBHQ has slight selectivity for the Ca2+ transport process of the Ins(1,4,5)P3-sensitive stores. We conclude that the Ins(1,4,5)P3-sensitive stores are a subset of those sensitive to tBuBHQ and that the latter is therefore unlikely to prove useful as a tool to discriminate Ins(1,4,5)P3-sensitive and -insensitive Ca2+ stores though it may provide opportunities to design more selective agents. 相似文献
12.
Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel.
下载免费PDF全文

Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding. 相似文献
13.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i). 相似文献
14.
Bildl W Strassmaier T Thurm H Andersen J Eble S Oliver D Knipper M Mann M Schulte U Adelman JP Fakler B 《Neuron》2004,43(6):847-858
Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and serves as the Ca2+ sensor. Here we show that, in addition, the cytoplasmic N and C termini of the channel protein form a polyprotein complex with the catalytic and regulatory subunits of protein kinase CK2 and protein phosphatase 2A. Within this complex, CK2 phosphorylates calmodulin at threonine 80, reducing by 5-fold the apparent Ca2+ sensitivity and accelerating channel deactivation. The results show that native SK channels are polyprotein complexes and demonstrate that the balance between kinase and phosphatase activities within the protein complex shapes the hyperpolarizing response mediated by SK channels. 相似文献
15.
Välimäki S Höög A Larsson C Farnebo LO Bränström R 《The Journal of biological chemistry》2003,278(50):49685-49690
Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously. 相似文献
16.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity 总被引:1,自引:0,他引:1
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO. 相似文献
17.
Laszlo JA 《Plant physiology》1994,104(3):937-944
Mineral uptake by soybean (Glycine max [L.] Merrill) seeds during development can significantly affect seed quality and value. Little is known about seed mineral transport mechanisms and control processes, although it is clear that each mineral displays a characteristic accumulation pattern. Ion-specific accumulation patterns could result from changes in source availability, in transport kinetics through the seed pod and seed coat, or in the mineral uptake capability of the embryo. Ca2+ and K+ have negligible and high phloem mobilities, respectively. Ca2+ accumulation lags behind dry matter (C and N) and K+ accumulation in soybean embryos. To eliminate source availability influences, the Ca2+ and K+ uptake ability of isolated embryos and of seeds in pod culture was examined during seed development. Sr2+ and Rb+ were used as transport analogs of Ca2+ and K+, respectively. Sr2+ and Rb+ uptake rates by isolated embryos increased with seed fresh weight, indicating that the embryo was not limiting Ca2+ accumulation. However, the pod-cultured embryo Sr2+ and Rb+ uptake rate trends differed: Rb+ uptake increased with seed fresh weight, whereas Sr2+ uptake rates remained constant or decreased slightly. Ovule Sr2+ influx data suggest that the pod and seed coat impose a transport barrier that could account for the relative decline in embryo Ca2+ content during development. 相似文献
18.
S Miyazaki H Shirakawa K Nakada Y Honda M Yuzaki S Nakade K Mikoshiba 《FEBS letters》1992,309(2):180-184
The sulfhydryl reagent thimerosal enhanced the sensitivity of hamster eggs to injected inositol 1,4,5-trisphosphate (InsP3) or Ca2+ to generate regenerative Ca2+ release from intracellular pools. A monoclonal antibody (mAb) to the InsP3 receptor blocked both the InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). The mAb also blocked Ca2+ oscillations induced by thimerosal. The results indicate that thimerosal enhances IICR sensitized by cytosolic Ca2+, but not CICR from InsP3-insensitive pools, and causes repetitive Ca2+ releases from InsP3-sensitive pools. 相似文献
19.
J Teulon P M Ronco M Geniteau-Legendre B Baudouin S Estrade R Cassingena A Vandewalle 《Journal of cellular physiology》1992,151(1):113-125
We compared the pattern of K+ channels and the mitogenic sensitivity to K+ channel blocking agents in primary cultures of rabbit proximal tubule cells (PC.RC) (Ronco et al., 1990) and two derived SV-40-transformed cell lines exhibiting specific functions of proximal (RC.SV1) and more distal (RC.SV2) tubule cells (Vandewalle et al., 1989). First, K+ channel equipment surveyed by the patch-clamp technique was modified after SV-40 transformation in both cell lines; although a high conductance Ca(2+)-activated K+ channel [K+200 (Ca2+)] remained the most frequently recorded K+ channel, the transformed state was characterized by emergence of three Ca(2+)-insensitive K+ channels (150, 50, and 30 pS), virtually absent from primary culture, contrasting with reduced frequency of two Ca(2+)-sensitive K+ channels (80 and 40 pS). Second, quinine (Q), tetraethylammonium ion (TEA) and charybdotoxin (CTX), at concentrations not affecting cell viability, all decreased 3H-TdR incorporation and cell growth in PC.RC cultures, but only TEA had similar effects in transformed cells. The latter were further characterized by paradoxical effects of Q that induced a marked increase in thymidine incorporation. Q also exerted contrasting effects on channel activity: it inhibited the [K+200 (Ca2+)] when the channel was highly active, with a Ki (0.2 mM) similar to that measured for 3H-TdR incorporation in PC.RC cells (0.3 mM), but increased the mean current through poorly active channels. TEA blocked all K+ channels with conductance greater than or equal to 50 pS, including the [K+200 (Ca2+)], in a range of concentrations that substantially affected cell proliferation. The unique effect of TEA on SV-40-transformed cells might be related to broad inhibition of K+ channels. 相似文献
20.
IP3-mediated Ca(2+) release plays a fundamental role in many cell signaling processes and has been the subject of numerous modeling studies. Only recently has the important role that mitochondria play in the dynamics of intracellular Ca(2+) signaling begun to be considered in experimental work and in computational models. Mitochondria sequester large amounts of Ca(2+) and thus have a modulatory effect on intracellular Ca(2+) signaling, and mitochondrial uptake of Ca(2+), in turn, has a regulatory effect on mitochondrial function. Here we integrate a well-established model of IP3-mediated Ca(2+) signaling with a detailed model of mitochondrial Ca(2+) handling and metabolic function. The incorporation of mitochondria results in oscillations in a bistable formulation of the IP3 model, and increasing metabolic substrate decreases the frequency of these oscillations consistent with the literature. Ca(2+) spikes from the cytosol are communicated into mitochondria and are shown to induce realistic metabolic changes. The model has been formulated using a modular approach that is easy to modify and should serve as a useful basis for the investigation of questions regarding the interaction of these two systems. 相似文献