首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
After the addition of actin to serum, the binding of actin to serum actin-binding proteins was analyzed by the method of immunoblotting using monospecific antibodies against vitamin D-binding protein (DBP) (group-specific component, Gc), human skeletal actin and human plasma gelsolin. When increasing amounts of globular actin were added to serum, actin bound to DBP preferentially. After exhausting DBP, actin began to bind to plasma gelsolin. When equally increasing amounts of filamentous actin were added to serum, actin was bound to both plasma gelsolin and DBP, and then uncomplexed DBP removed one actin molecule from gelsolin-actin 1:2 complex, resulting in a gelsolin-actin 1:1 complex. These results support the theory that the actin-depolymerizing activity of serum is due to the concerted role of plasma gelsolin and DBP.  相似文献   

2.
The mechanism of the interaction between two genetically determined serum vitamin D-binding protein forms and the muscle skeletal actin was investigated. Vitamin D-binding protein was isolated in a good yield from human serum, using immunoaffinity chromatography. 16 mg of pure vitamin D-binding protein were obtained from 100 ml of serum. The interaction between purified vitamin D-binding protein and skeletal muscle actin was studied by viscosity, delta A (232 nm) measurements and by electron microscopy. The effect of vitamin D-binding protein on actin polymerization is characterized by the decrease of the nucleation and elongation rates and by the decrease of the final concentration of polymerized actin in the steady state. The depolymerizing effect is not the result of direct action on vitamin D-binding protein on F-actin but rather of an increased concentration of the complex of the former protein with G-actin. The characteristics of the vitamin D-binding protein and profilin interactions with actin are similar. Both proteins seem to react only with G-actin.  相似文献   

3.
Functional studies that distinguish free from actin-bound gelsolin based on the ability of the former to sever actin filaments reveal that the binding of actin monomers to gelsolin is highly cooperative and can be prevented by prior incubation of actin with vitamin D-binding protein (DBP), even though the apparent affinity of gelsolin for actin is 50-fold greater than that of DBP. Measurements of actin binding by immunoprecipitation and pyrene-actin fluorescence establish that DBP-actin complexes do not bind to gelsolin and that DBP removes one of the actin monomers in a 2:1 actin-gelsolin complex. These studies may explain why DBP-actin complexes exist in blood plasma in vivo in the presence of free gelsolin and suggest that the interaction of gelsolin with actin in cells and plasma may be regulated in part by actin monomer binding proteins.  相似文献   

4.
The human serum vitamin D-binding protein (DBP) has many physiologically important functions, ranging from transporting vitamin D3 metabolites, binding and sequestering globular actin and binding fatty acids to functioning in the immune system. Here we report the 2.3 A crystal structure of DBP in complex with 25-hydroxyvitamin D3, a vitamin D3 metabolite, which reveals the vitamin D-binding site in the N-terminal part of domain I. To more explicitly explore this, we also studied the structure of DBP in complex with a vitamin D3 analog. Comparisons with the structure of human serum albumin, another family member, reveal a similar topology but also significant differences in overall, as well as local, folding. These observed structural differences explain the unique vitamin D3-binding property of DBP.  相似文献   

5.
A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/K(d), however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (K(d) = 2 microm versus 0.6 microm). These hybrids bound even more weakly to HPF than did yeast actin (K(d) = 5 microm versus 3.2 microm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster k(off) and a 2 times faster k(on). sub12 bound with a 3 times faster k(off) and a 1.5 times slower k(on). Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.  相似文献   

6.
Therapeutic potential of vitamin D-binding protein   总被引:1,自引:0,他引:1  
Vitamin D-binding protein (DBP) is a multi-functional plasma protein with many important functions. These include transport of vitamin D metabolites, control of bone development, binding of fatty acids, sequestration of actin and a range of less-defined roles in modulating immune and inflammatory responses. Exploitation of the unique properties of DBP could enable the development of important therapeutic agents for the treatment of a variety of diseases.  相似文献   

7.
CEACAM1-4S (carcinoembryonic antigen cell adhesion molecule 1, with 4 ectodomains and a short, 12-14 amino acid cytoplasmic domain) mediates lumen formation via an apoptotic and cytoskeletal reorganization mechanism when mammary epithelial cells are grown in a three-dimensional model of mammary morphogenesis. We show by quantitative yeast two-hybrid, BIAcore, NMR HSQC and STD, and confocal analyses that amino acids phenylalanine (Phe(454)) and lysine (Lys(456)) are key residues that interact with actin orchestrating the cytoskeletal reorganization. A CEACAM1 membrane model based on vitamin D-binding protein that predicts an interaction of Phe(454) at subdomain 3 of actin was supported by inhibition of binding of actin to vitamin D-binding protein by the cytoplasmic domain peptide. We also show that residues Thr(457) and/or Ser(459) are phosphorylated in CEACAM1-transfected cells grown in three-dimensional culture and that mutation analysis of these residues (T457A/S459A) or F454A blocks lumen formation. These studies demonstrate that a short cytoplasmic domain membrane receptor can directly mediate substantial intracellular signaling.  相似文献   

8.
Human serum vitamin D binding protein (hDBP), a 58-kDa inter-alpha-globulin, is known to bind, monomeric actin (G-actin) in equimolar quantities. Using monoclonal and polyclonal anti-hDBP antibodies, hDBP, and radioiodinated actin, we developed a reliable saturation assay for actin bound to hDBP. By utilizing this assay, kinetic analysis, and ultracentrifugal sedimentation in sucrose gradients, these proteins' binding affinities (Kd = 10(-9) M) were demonstrated to be 10- to 100-fold greater than earlier estimates. At 4 degrees C, hDBP has an association rate constant of 2.2 x 10(4) M-1 s-1 and a rate of dissociation displaying a t1/2 of 22 h. This high affinity binding was largely unaffected by conditions favoring actin filament formation (1 mM MgCl2 and/or 50 mM KCl), by the range of pH from 6.8 to 8.6 or by temperatures from 4 to 37 degrees C. Compared with ATP-alpha-actin, a 2-fold decrease of binding affinity was observed for the nonmuscle isoactins (beta,gamma), ADP-G-alpha-actin, and N'-ethylmaleimide-modified G-alpha-actin. The 25-hydroxyvitamin D3 and 1 alpha,25-dihydroxyvitamin D3 holo-sterol forms of hDBP bound actin in a manner indistinguishable from the apo-sterol hDBP. The common polymorphisms of hDBP (DBP1 slow, DBP1 fast, and DBP2) were shown to have an equal avidity for G-actin binding. Human platelet profilin competed with hDBP for binding to G-actin, but was 1000-fold less potent (Ki = 1.9 microM). When platelet profilactin was incubated with hDBP, profilin was liberated and hDBP-actin complexes formed. DNase I, which forms a triprotein complex with hDBP-G actin, did not alter the affinity of binding of actin by hDBP. The very high affinity binding observed, which was largely unaffected by the state of G-actin, pH, and ionic conditions, appears to support a constitutive role for plasma DBP in the sequestration of actin monomers, as well as actin from actin-profilin complexes, that are liberated during cell injury.  相似文献   

9.
Molecular packing in profilin: actin crystals and its implications   总被引:5,自引:0,他引:5  
Analysis of profilin: actin crystals reveals an extensive intermolecular network, rather than a discrete "monomeric complex", comprising stacked actin ribbons held in place by columns of profilin molecules, wedged in between neighboring actin subunits and running perpendicular to the ribbons. Comparison with data from electron microscopy, X-ray diffraction, spectroscopy, and biochemistry of actin suggests that a simple transformation relates the ribbon to f-actin. The crystals exhibit unusual polymorphic properties, which strengthens the view that movements within the actin monomer are important for force generation.  相似文献   

10.
Proteins of the Ena/VASP family are implicated in processes that require dynamic actin remodeling such as axon guidance and platelet activation. In this work, we explored some of the pathways that likely regulate actin dynamics in part via EVL (Ena/VASP-like protein). Two isoforms, EVL and EVL-I, were highly expressed in hematopoietic cells of thymus and spleen. In CD3-activated T-cells, EVL was found in F-actin-rich patches and at the distal tips of the microspikes that formed on the activated side of the T-cells. Like the other family members, EVL localized to focal adhesions and the leading edge of lamellipodia when expressed in fibroblasts. EVL was a substrate for the cAMP-dependent protein kinase, and this phosphorylation regulated several of the interactions between EVL and its ligands. Unlike VASP, EVL nucleated actin polymerization under physiological conditions, whereas phosphorylation of both EVL and VASP decreased their nucleating activity. EVL bound directly to the Abl, Lyn, and nSrc SH3 domains; the FE65 WW domain; and profilin, likely via its proline-rich core. Binding of Abl and nSrc SH3 domains, but not profilin or other SH3 domains, was abolished by cAMP-dependent protein kinase phosphorylation of EVL. We show strong cooperative binding of two profilin dimers on the polyproline sequence of EVL. Additionally, profilin competed with the SH3 domains for binding to partially overlapping binding sites. These data suggest that the function of EVL could be modulated in a complex manner by its interactions with multiple ligands and through phosphorylation by cyclic nucleotide dependent kinases.  相似文献   

11.
Frozen, hydrated acrosomal bundles from Limulus sperm were imaged with a 400 kV electron cryomicroscope. Segments of this long bundle can be studied as a P1 crystal with a unit cell containing an acrosomal filament with 28 actin and 28 scruin molecules in 13 helical turns. A novel computational procedure was developed to extract single columns of superimposed acrosomal filaments from the distinctive crystallographic view. Helical reconstruction was used to generate a three-dimensional structure of this computationally isolated acrosomal filament. The scruin molecule is organized into two domains which contact two actin subunits in different strands of the same actin filament. A correlation of Holmes' actin filament model to the density in our acrosomal filament map shows that actin subdomains 1, 2, and 3 match the model density closely. However, actin subdomain 4 matches rather poorly, suggesting that interactions with scruin may have altered actin conformation. Scruin makes extensive interactions with helix-loop-beta motifs in subdomain 3 of one actin subunit and in subdomain 1 of a consecutive actin subunit along the genetic filament helix. These two actin subdomains are structurally homologous and are closely spaced along the actin filament. Our model suggests that scruin, which is derived from a tandemly duplicated gene, has evolved to bind structurally homologous but non-identical positions across two consecutive actin subunits.  相似文献   

12.
Chromatofocusing was used to purify the vitamin D-binding protein (DBP) from pig plasma in a procedure that consisted of an initial DEAE-cellulose chromatography followed by DEAE-Sephadex chromatography, with final purification by chromatofocusing. The protein was purified 184-fold over its concentration in plasma. When the plasma was labelled with a tracer concentration of [3H]calcidiol, it was apparent that holo- and apo-DBP did not co-chromatograph on chromatofocusing. The separation of these two forms of DBP on chromatofocusing was verified by using purified apo-DBP mixed with either a tracer or a saturating concentration of calcidiol. This separation was consistent with differences observed in their isoelectric points. The ability to separate apo and holo forms of DBP should permit the study of their specific interactions with other binding proteins and help determine the physiological relevance of these interactions.  相似文献   

13.
Vitamin D-binding protein (Gc-globulin) binds actin   总被引:22,自引:0,他引:22  
Actin, an ubiquitous highly conserved intracellular protein, and the serum vitamin D-binding protein (DBP) form tight 1:1 molar complexes in vitro. This interaction, which is not species-specific, explains the widespread occurrence of the 5-6 S protein responsible for the binding of 25-hydroxycholecalciferol in high speed supernatants of all nucleated tissues. Incubation of F-actin, the filamentous form of this protein, with DBP leads to depolymerization of the former. Actin, complexed with deoxyribonuclease I, retains its ability to bind DBP. Erythrocyte actin, prepared from red cell ghosts, also displays binding properties for DBP. The biological significance of this new interaction of actin is not yet understood.  相似文献   

14.
Serum vitamin D-binding protein (DBP) is structurally very similar to serum albumin (ALB); both have three distinct structural domains and high cysteine-content. Yet, functionally they are very different. DBP possesses high affinity for vitamin D metabolites and G-actin, but ALB does not. It has been suggested that there may be cross-talk among the domains so that binding of one ligand may influence the binding of others. In this study we have employed 2-p-toluidinyl-6-sulfonate (TNS), a reporter molecule that fluoresces upon binding to hydrophobic pockets of DBP. We observed that recombinant domain III possesses strong binding for TNS, which is not influenced by 25-hydroxyvitamin D3 (25-OH-D3), yet TNS fluorescence of the whole protein is quenched by 25-OH-D3. These results provide a direct evidence of cross-talk among the structural domains of DBP.  相似文献   

15.
Mechanism of the interaction of human platelet profilin with actin   总被引:24,自引:4,他引:20  
We have reexamined the interaction of purified platelet profilin with actin and present evidence that simple sequestration of actin monomers in a 1:1 complex with profilin cannot explain many of the effects of profilin on actin assembly. Three different methods to assess binding of profilin to actin show that the complex with platelet actin has a dissociation constant in the range of 1 to 5 microM. The value for muscle actin is similar. When bound to actin, profilin increases the rate constant for dissociation of ATP from actin by 1,000-fold and also increases the rate of dissociation of Ca2+ bound to actin. Kinetic simulation showed that the profilin exchanges between actin monomers on a subsecond time scale that allows it to catalyze nucleotide exchange. On the other hand, polymerization assays give disparate results that are inconsistent with the binding assays and each other: profilin has different effects on elongation at the two ends of actin filaments; profilin inhibits the elongation of platelet actin much more strongly than muscle actin; and simple formation of 1:1 complexes of actin with profilin cannot account for the strong inhibition of spontaneous polymerization. We suggest that the in vitro effects on actin polymerization may be explained by a complex mechanism that includes weak capping of filament ends and catalytic poisoning of nucleation. Although platelets contain only 1 profilin for every 5-10 actin molecules, these complex reactions may allow substoichiometric profilin to have an important influence on actin assembly. We also confirm the observation of I. Lassing and U. Lindberg (1985. Nature [Lond.] 318:472-474) that polyphosphoinositides inhibit the effects of profilin on actin polymerization, so lipid metabolism must also be taken into account when considering the functions of profilin in a cell.  相似文献   

16.
The vitamin D-binding protein (DBP), also known as group-specific component or Gc-globulin, is a multifunctional plasma protein that can significantly enhance the leukocyte chemotactic activity to C5a and C5a des-Arg. DBP is a member of the albumin gene family and has a triple domain modular structure with extensive disulfide bonding that is characteristic of this protein family. The goal of this study was to identify a region in DBP that mediates the chemotactic cofactor function for C5a. Full-length and truncated versions of DBP (Gc-2 allele) were expressed in Escherichia coli using a glutathione S-transferase fusion protein expression system. The structure of the expressed proteins was confirmed by SDS-PAGE and immunoblotting, whereas protein function was verified by quantitating the binding of [(3)H]vitamin D. Dibutyryl cAMP-differentiated HL-60 cells were utilized to test purified natural DBP and recombinant expressed DBP (reDBP) for their ability to enhance chemotaxis and intracellular Ca(2+) flux to C5a. Natural and full-length reDBP (458 amino acid residues) as well as truncated reDBPs that contained the N-terminal domain I (domains I and II, residues 1-378; domain I, residues 1-191) significantly enhanced both cell movement and intracellular Ca(2+) concentrations in response to C5a. Progressive truncation of DBP domain I localized the chemotactic enhancing region between residues 126-175. Overlapping peptides corresponding to this region were synthesized, and results indicate that a 20-amino-acid sequence (residues 130-149, 5'-EAFRKDPKEYANQFMWEYST-3') in domain I of DBP is essential for its C5a chemotactic cofactor function.  相似文献   

17.
We purified profilin from rabbit alveolar macrophages and documented its structural and functional similarity to profilins isolated from other cells. The KD for formation of the macrophage profilin-actin complex was 3.0 +/- 0.8 microM (mean +/- S.D.). The affinity of this protein for actin did not change significantly in the presence of various concentrations of KCl and MgCl2, profilin-actin complex concentration being strictly dependent on the critical actin monomer concentration and free profilin concentration. We also examined profilin's interactions with actin in the presence of acumentin, a macrophage protein which inhibits actin monomer exchange at the "pointed" ends of actin filaments. Low concentrations of this protein caused substantial decreases in estimated profilin-actin complex concentration. The macrophage gelsolincalcium ion complex which blocks exchange at the "barbed" end of actin filaments, when added to profilin and actin solutions in substoichiometric concentrations, caused large increases in estimated profilin-actin complex concentration. The changes in calculated profilin-actin complex concentration induced by these two actin-modulating proteins were too large to be explained solely by their effects on critical actin monomer concentration.  相似文献   

18.
Cells contain multiple formin isoforms that drive the assembly of profilin-actin for diverse processes. Given that many organisms also contain several profilin isoforms, specific formin/profilin pairs might be matched to optimally stimulate actin polymerization. We utilized a combination of bulk actin polymerization and single filament total internal reflection fluorescence microscopy assays to measure the effect of different profilin isoforms on the actin assembly properties of the cytokinesis formins from fission yeast (Cdc12p) and the nematode worm (CYK-1). We discovered that Cdc12p only effectively utilizes the single fission yeast profilin isoform SpPRF. Conversely, CYK-1 prefers the essential worm cytokinesis profilin CePFN-1 to the two non-essential worm profilin isoforms (SpPRF = CePFN-1 > CePFN-2 > CePFN-3). Chimeras containing the profilin-binding formin homology 1 (FH1) domain from one formin and the barbed-end associated FH2 domain from the other formin, revealed that both the FH1 and FH2 domains help confer profilin isoform specialization. Although the Cdc12p and CYK-1 FH1 domains cannot differentiate between profilin isoforms in the absence of actin, formin FH1 domains appear to preferentially select specific isoforms of profilin-actin. Surprisingly, analysis of profilin point mutants revealed that differences in highly conserved residues in both the poly-L-proline and actin binding regions of profilin do not explain their differential utilization by formin. Therefore, rapid formin-mediated elongation of profilin-actin depends upon favorable interactions of profilin-actin with the FH1 domain as well as the barbed-end associated FH2 domain. Specific formin FH1FH2 domains are tailored to optimally utilize actin bound to particular profilin isoforms.  相似文献   

19.
Participation of actin in cellular processes relies on the dynamics of filament assembly. Filament elongation is fed by monomeric actin in complex with either profilin or a Wiscott-Aldrich syndrome protein (WASP) homology domain 2 (WH2)/beta-thymosin (betaT) domain. WH2/betaT motif repetition (typified by ciboulot) or combination with nonrelated domains (as found in N-WASP) results in proteins that yield their actin to filament elongation. Here, we report the crystal structures of actin bound hybrid proteins, constructed between gelsolin and WH2/betaT domains from ciboulot or N-WASP. We observe the C-terminal half of ciboulot domain 2 bound to actin. In solution, we show that cibolout domains 2 and 3 bind to both G- and F-actin, and that whole ciboulot forms a complex with two actin monomers. In contrast, the analogous portion of N-WASP WH2 domain 2 is detached from actin, indicating that the C-terminal halves of the betaT and WH2 motifs are not functionally analogous.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号