首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high‐throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation.  相似文献   

2.
3.
Clara Frontali 《Genetica》1994,94(2-3):91-100
Extensive genome plasticity inPlasmodium involves frequent loss of dispensable functions under non-selective conditions, polymorphisms in subtelomeric repetitive regions, as well as rapid and apparently concerted variation in the intra-genic repetitive arrays that are typical of plasmodial antigen genes. As an example of the latter type of variation, the region of the merozoite surface antigen gene MSA-1 ofPlasmodium falciparum, which encodes a tri-peptide repeat, is analysed in detail. The example illustrates how evasion of the immune defenses of the vertebrate host can be achieved through repeat homogenization mechanisms, acting at the DNA level, and leading to rapid fixation of variant epitopes. The remarkable ability of Plasmodia to utilize mechanisms which operate on its own nuclear DNA in the course of mitotic multiplication is discussed against the need of life cycle closure as a haploid unicellular. The possibility is suggested that active genomic diversification in a (clonal) multicellular population evolved as an adaptive tool.  相似文献   

4.
Since the tetraploidization of the Arabidopsis thaliana ancestor 30-35 million years ago (Mya), a wave of chromosomal rearrangements have modified its genome architecture. The dynamics of this process is unknown, as it has so far been impossible to date individual rearrangement events. In this paper, we present evidence demonstrating that the majority of rearrangements occurred before the Arabidopsis-Brassica split 20-24 Mya, and that the segmental architecture of the A. thaliana genome is predominantly conserved in Brassica. This finding is based on the conservation of four rearrangement breakpoints analysed by fluorescence in situ hybridization (FISH) and RFLP mapping of three A. thaliana chromosomal regions. For this purpose, 95 Arabidopsis bacterial artificial chromosomes (BACs) spanning a total of 8.25 Mb and 81 genetic loci for 36 marker genes were studied in the Brassica oleracea genome. All the regions under study were triplicated in the B. oleracea genome, confirming the hypothesis of Brassica ancestral genome triplication. However, whilst one of the breakpoints was conserved at one locus, it was not at the two others. Further comparison of their organization may indicate that the evolution of the hexaploid Brassica progenitor proceeded by several events, separated in time. Genetic mapping and reprobing with rDNA allowed assignment of the regions to particular Brassica chromosomes. Based on this study of regional organization and evolution, a new insight into polyploidization/diploidization cycles is proposed.  相似文献   

5.
A polyploid organism by possessing more than two sets of chromosomes from one species (autopolyploidy) or two or more species (allopolyploidy) is known to have evolutionary advantages. However, by what means a polyploid accommodates increased genetic dosage or divergent genomes (allopolyploidy) in one cell nucleus and cytoplasm constitutes an enormous challenge. Recent years have witnessed efforts and progress in exploring the possible mechanisms by which these seemingly intangible hurdles of polyploidy may be ameliorated or eventually overcome. In particular, the documentation of rapid and extensive non-Mendelian genetic and epigenetic changes that often accompany nascent polyploidy is revealing: the resulting non-additive and novel gene expression at global, regional and local levels, and timely restoration of meiotic chromosomal behavior towards bivalent pairing and disomic inheritance may ensure rapid establishment and stabilization as well as its long-term evolutionary success. Further elucidation on these novel mechanisms underpinning polyploidy will promote our understanding on fundamental issues in evolutionary biology and in our manipulation capacities in future genetic improvement of important crops that are currently polyploids in genomic constitution. This review is intended to provide an updated discussion on these interesting and important issues within the scope of a specific yet one of the most important plant groups--polyploid wheat and its related species.  相似文献   

6.
Chromosome rearrangements are common, but their dynamics over time, mechanisms of occurrence and the genomic features that shape their distribution and rate are still poorly understood. We used allohaploid Brassica napus (AC, n = 19) as a model to analyze the effect of genomic features on the formation and diversity of meiotically driven chromosome rearrangements. We showed that allohaploid B. napus meiosis leads to extensive new structural diversity. Almost every allohaploid offspring carried a unique combination of multiple rearrangements throughout the genome, and was thus structurally differentiated from both its haploid parent and its sister plants. This large amount of genome reshuffling was remarkably well‐tolerated in the heterozygous state, as neither male nor female fertility were strongly reduced, and meiosis behavior was normal in most cases. We also used a quantitative statistical model, which accounted for 75% of the observed variation in rearrangement rates, to show that the distribution of meiotically driven chromosome rearrangements was not random but was shaped by three principal genomic features. In descending order of importance, the rate of marker loss increased strongly with genetic distance from the centromere, the degree of collinearity between chromosomes, and the genome of origin (A < C). Overall, our results demonstrate that B. napus accumulates a large number of genetic changes, but these rearrangements are not randomly distributed in the genome. The structural genetic diversity produced by the allohaploid pathway and its role in the evolution of polyploid species compared to diploid meiosis are discussed.  相似文献   

7.
It is timely to re-examine the phenomenon of polyploidy in plants. Indeed, the power of modern molecular technology to provide new insights, and the impetus of genomics, make polyploidy a fit, fashionable and futuristic topic for review. Some historical perspective is essential to understand the meaning of the terms, to recognize what is already known and what is dogma, and to frame incisive questions for future research. Polyploidy is important because life on earth is predominantly a polyploid phenomenon. Moreover, civilization is mainly powered by polyploid food – notably cereal endosperm. Ongoing uncertainty about the origin of triploid endosperm epitomizes our ignorance about somatic polyploidy. New molecular information makes it timely to reconsider how to identity polyploids and what is a polyploid state. A functional definition in terms of a minimal genome may be helpful. Genes are known that can raise or lower ploidy level. Molecular studies can test if, contrary to dogma, the relationship between diploids and polyploids is a dynamic two-way system. We still need to understand the mechanisms and roles of key genes controlling ploidy level and disomic inheritance. New evidence for genome duplications should be compared with old ideas about cryptopolyploidy, and new views of meiosis should not ignore premeiotic genome separation. In practice, new knowledge about polyploidy will be most useful only when it reliably predicts which crops can be usefully improved as stable autopolyploids and which genomes combined to create successful new allopolyloids.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 411–423.  相似文献   

8.
Background and AimsThe dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.MethodsWe conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution.ConclusionsOur results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.  相似文献   

9.
Brassica napus (AnAnCnCn) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (ArAr) and 74 accessions of Brassica carinata (BcBcCcCc) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high‐throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.  相似文献   

10.
Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.  相似文献   

11.
Genome plasticity and ori-ter rebalancing in Salmonella typhi   总被引:4,自引:0,他引:4  
Genome plasticity resulting from frequent rearrangement of the bacterial genome is a fascinating but poorly understood phenomenon. First reported in Salmonella typhi, it has been observed only in a small number of Salmonella serovars, although the over 2,500 known Salmonella serovars are all very closely related. To gain insights into this phenomenon and elucidate its roles in bacterial evolution, especially those involved in the formation of particular pathogens, we systematically analyzed the genomes of 127 wild-type S. typhi strains isolated from many places of the world and compared them with the two sequenced strains, Ty2 and CT18, attempting to find possible associations between genome rearrangement and other significant genomic features. Like other host-adapted Salmonella serovars, S. typhi contained large genome insertions, including the 134 kb Salmonella pathogenicity island, SPI7. Our analyses showed that SPI7 disrupted the physical balance of the bacterial genome between the replication origin (ori) and terminus (ter) when this DNA segment was inserted into the genome, and rearrangement in individual strains further changed the genome balance status, with a general tendency toward a better balanced genome structure. In a given S. typhi strain, genome diversification occurred and resulted in different structures among cells in the culture. Under a stressed condition, bacterial cells with better balanced genome structures were selected to greatly increase in proportion; in such cases, bacteria with better balanced genomes formed larger colonies and grew with shorter generation times. Our results support the hypothesis that genome plasticity as a result of frequent rearrangement provides the opportunity for the bacterial genome to adopt a better balanced structure and thus eventually stabilizes the genome during evolution.  相似文献   

12.
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct ‘genome types’ (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1–Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio‐temporal dynamics of genome organization and evolution of this region in ‘natural’ polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage‐specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.  相似文献   

13.
Studies of microbial eukaryotes have been pivotal in the discovery of biological phenomena, including RNA editing, self-splicing RNA, and telomere addition. Here we extend this list by demonstrating that genome architecture, namely the extensive processing of somatic (macronuclear) genomes in some ciliate lineages, is associated with elevated rates of protein evolution. Using newly developed likelihood-based procedures for studying molecular evolution, we investigate 6 genes to compare 1) ciliate protein evolution to that of 3 other clades of eukaryotes (plants, animals, and fungi) and 2) protein evolution in ciliates with extensively processed macronuclear genomes to that of other ciliate lineages. In 5 of the 6 genes, ciliates are estimated to have a higher ratio of nonsynonymous/synonymous substitution rates, consistent with an increase in the rate of protein diversification in ciliates relative to other eukaryotes. Even more striking, there is a significant effect of genome architecture within ciliates as the most divergent proteins are consistently found in those lineages with the most highly processed macronuclear genomes. We propose a model whereby genome architecture-specifically chromosomal processing, amitosis within macronuclei, and epigenetics-allows ciliates to explore protein space in a novel manner. Further, we predict that examination of diverse eukaryotes will reveal additional evidence of the impact of genome architecture on molecular evolution.  相似文献   

14.
Tremendous interspecific genome size variation is a well known phenomenon, whereas genome size within a species is supposed to be exceptionally stable and thus useful as a taxonomic trait. Using DAPI flow cytometry, we tested the stability of genome size in various representatives of Chenopodium s.s. (Amaranthaceae) across a broad geographical range (from Portugal to eastern Russia) in Eurasia. We sampled 1977 Chenopodium individuals of four different ploidies (di‐, tetra‐, hexa‐ and decaploids) from 347 populations. Intraspecific relative genome size variation was low, ranging from 2.0% in C. probstii to 7.7% in C. album, even in the species with broad distributions. We distinguished 12 homogeneous relative genome size groups among the 17 Chenopodium spp. tested. Genome size is useful for distinguishing certain morphologically similar groups of species such as C. suecicum/C. album, C. vulvaria/C. pamiricumC. iljinii/C. sosnowskyi/C. karoi. Due to its genome size stability, the cosmopolitan species C. album can be used as an alternative internal standard in flow‐cytometric analyses with the additional advantages of annual life cycle, self‐compatibility and common occurrence all over the world. Finally, we did not detect any sign of hybridization between Chenopodium spp. of different ploidies.  相似文献   

15.
We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).  相似文献   

16.
17.
Genome size in gymnosperms   总被引:7,自引:0,他引:7  
The DNA 2C and per chromosome values of 57 species belonging to 22 genera of gymnosperms have been analysed. The overall range is 12-fold with a modal value of about 30.0 pg.Cycadales exhibit a 2-fold difference. AmongConiferales with a 4-fold variation, thePinaceae have higher mean DNA contents as well as a greater range and diversity than other families. Remarkable interspecific differences are found inCycas, Picea, Larix, Pinus, Callitris, Cupressus, andChamaecyparis. Despite this, there is a constancy of basikaryotypes within these genera.Gnetum shows a distinctly low DNA value.  相似文献   

18.
Whole-Genome Duplication and Plant Macroevolution   总被引:1,自引:0,他引:1  
  相似文献   

19.
Analyses of selected bacterial artificial chromosomes (BACs) clones suggest that the retrotransposon component of angiosperm genomes can be amplified or deleted, leading to genome turnover. Here, Nicotiana allopolyploids were used to characterize the nature of sequence turnover across the whole genome in allopolyploids known to be of different ages. Using molecular-clock analyses, the likely age of Nicotiana allopolyploids was estimated. Genomic in situ hybridization (GISH) and tandem repeat characterization were used to determine how the parental genomic compartments of these allopolyploids have diverged over time. Paternal genome sequence losses, retroelement activity and intergenomic translocation have been reported in early Nicotiana tabacum evolution (up to 200,000 yr divergence). Here it is shown that within 1 million years of allopolyploid divergence there is considerable exchange of repeats between parental chromosome sets. After c. 5 million years of divergence GISH fails. This GISH failure may represent near-complete genome turnover, probably involving the replacement of nongenic sequences with new, or previously rare sequence types, all occurring within a conserved karyotype structure. This mode of evolution may influence or be influenced by long-term diploidization processes that characterize angiosperm polyploidy-diploid evolutionary cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号