首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abilities of organisms to sequester substrate are described by the two kinetic constants specific affinity, a°, and maximal velocity Vmax. Specific affinity is derived from the frequency of substrate-molecule collisions with permease sites on the cell surface at subsaturating concentrations of substrates. Vmax is derived from the number of permeases and the effective residence time, τ, of the transported molecule on the permease. The results may be analyzed with affinity plots (v/S versus v, where v is the rate of substrate uptake), which extrapolate to the specific affinity and are usually concave up. A third derived parameter, the affinity constant KA, is similar to KM but is compared to the specific affinity rather than Vmax and is defined as the concentration of substrate necessary to reduce the specific affinity by half. It can be determined in the absence of a maximal velocity measurement and is equal to the Michaelis constant for a system with hyperbolic kinetics. Both are taken as a measure of τ, with departure of KM from KA being affected by permease/enzyme ratios. Compilation of kinetic data indicates a 108-fold range in specific affinities and a smaller (103-fold) range in Vmax values. Data suggest that both specific affinities and maximal velocities can be underestimated by protocols which interrupt nutrient flow prior to kinetic analysis. A previously reported inverse relationship between specific affinity and saturation constants was confirmed. Comparisons of affinities with ambient concentrations of substrates indicated that only the largest a°S values are compatible with growth in natural systems.  相似文献   

2.
Traditional concepts of nutrient uptake and growth kinetics as linked by cell yield are presented. Phenomena affecting the kinetics are examined along with a discussion of those which lead to ambiguity. Concepts of flux control are presented to help understand the distribution of material along metabolic pathways. Specific affinity is described to relate nutrient accumulation rates to transporter density. It is shown to be a primary kinetic constant and the best available index of nutrient collection ability. As an aid to understanding, specific affinity is reexpressed in terms of membrane permeability. Formulations of nutrient transport rate as a function of cellular composition, particularly transporter and enzyme content and known as janusian kinetics, are described as an improvement to specific affinity theory. Procedures for quantified unidirectional fluxes are reviewed to identify the difference between gross and net transport rates of substrate. Collision frequency theory is used to show that in addition to total biomass, cell size and transporter density should also be included in rate equations describing microbial growth. Theory diversity suggests that one reason for microbial metabolic is that the likelihood of additional collisions of substrate molecules with a cell surface, after an initial collision, requires only a sparse distribution of transporter sites for maximal rate, leaving room for additional transporters able to collect other substrate types.  相似文献   

3.
Many transport proteins, including the clinically important organic anion transporters (OATs), appear to function via an “alternating access” mechanism. In analyzing the kinetics of these transporters, the terms K m and V max are often treated in the field as denoting, respectively, the affinity of the substrate for the transporter and the turnover (conformational switch) rate of the substrate–transporter complex. In fact, the expressions for both these parameters have very complex forms comprising multiple rate constants from conformational switch as well as association/dissociation steps in the cycling of the transporter and, therefore, do not have straightforward physical meanings. However, if the rapid equilibrium assumption is made (namely, that the association/dissociation steps occur far more rapidly than the conformational switch steps), these expressions become greatly simplified and their physical meaning clear, though still distinct from the conventional interpretations. V max will be a function of not just the rate of substrate–transporter complex turnover but also the rate of the “return” conformational switch and will vary largely with the slower of these two steps (the rate-limiting step). K m will be seen to be related to substrate affinity by a term that varies inversely with the substrate–transporter complex turnover rate, essentially because the greater this rate, the greater the extent to which transporters will be distributed in a conformation inaccessible to substrate. Here, an intuitive approach is presented to demonstrate these conclusions. The phenomena of trans-stimulation and trans-inhibition are discussed in the context of this analysis.  相似文献   

4.
Summary We used specific binding of phlorizin to the intact intestinal mucosa in order to measure glucose transport site density in intestines of mice fed a high-carbohydrate or no-carbohydrate diet. Nonspecific binding varied with intestinal position but showed only modest dependence on diet. Specific binding to glucose transporters was 1.9 times greater in jejunum of high-carbohydrate mice than of no-carbohydrate mice; this ratio was the same as the ratio for Vmax values of actived-glucose uptake between the two diet groups. The gradient in specific binding of phlorizin along the intestine paralleled the gradient in Vmax of glucose transport. These results directly demonstrate that the increase in intestinal glucose transport caused by a high-carbohydrate diet is due to induction of glucose transporter. They also indicate that the normal positional graident in glucose transport along the intestine arises from a gradient in transporters, induced by the normal gradient in luminal glucose concentration.  相似文献   

5.
Young sunflower plants (Helianthus annuus L.) under stress oflow nitrate or phosphate availability exhibited increases inroot: shoot ratio and in kinetic parameters for uptake. Theyshowed no significant changes in photosynthetic utilizationof either nutrient. Increases in root: shoot ratio were achievedby early and persistent suppression of shoot growth, but notroot growth. Affinity for phosphate uptake, 1/Km(P), increasedwith phosphate stress, as did affinity for nitrate uptake, 1/Km(N),with nitrate stress. Maximal uptake rate, Vmax, for phosphateuptake increased with phosphorus stress; Vmax for nitrate didnot increase with nitrogen stress. Phosphate Vmax was relatedstrongly to root nutrient status. Decreases in Vmax with plantage were not well explained by changes in age structure of roots.Estimated benefits of acclimatory changes in root: shoot ratioand uptake kinetics ranged up to 2-fold increases in relativegrowth rate, RGR. The relation of RGR to uptake physiology followedpredictions of functional balance moderately well, with somesystematic deviations. Analyses of RGR using growth models implyno significant growth benefit from regulating Vmax, specifically,not from down-regulating it at high nutrient availability. Quantitativebenefits of increases in root: shoot ratio and uptake parametersare predicted to be quite small under common conditions whereinnutrient concentrations are significantly depleted by uptake.The root: shoot response is estimated to confer the smallestbenefit under non-depleting conditions and the largest benefitunder depleting conditions. Even then, the absolute benefitis predicted to be small, possibly excepting the case of heterogeneoussoils. Depleting and non-depleting conditions are addressedwith very different experimental techniques. We note that atheoretical framework is lacking that spans both these cases,other than purely numerical formulations that are not readilyinterpreted. Key words: Nutrient stress, nutrient uptake, nutrient use efficiency, relative growth rate, Helianthus annuus  相似文献   

6.
Formulations are presented that describe the concentration dependency of nutrient-limited transport and growth in molecular terms. They relate the rate of transport at steady state through a two-sequence process, transport and metabolism, to ambient concentrations according to the amounts and kinetic characteristics of the two rate-limiting proteins in these sequences. Sequences are separated by a metabolic pool. A novel feature of these formulations is the translation coefficient, which relates the transport rate attained at given ambient nutrient concentrations and membrane transporter characteristics to the nutrient concentrations sustained in the metabolic pools. The formulations, termed janusian kinetics, show that hyperbolic kinetics are retained during independent changes in transporter and enzyme contents or characteristics. Specific affinity (a degrees (A)) depends strongly on the amount and kinetic characteristics of the transporters; it is also mildly affected by the amount and characteristics of the rate-limiting enzyme. This kinetic constant best describes the ability to accumulate substrate from limiting concentrations. Maximal velocity (V(max)) describes uptake from concentrated solutions and can depend strongly on either limiting enzyme content or the associated content of transporters. The whole-cell Michaelis constant (K(T)), which depends on the ratio of rate-limiting enzyme to transporter, can be relatively independent of change in a degrees (A) and is best used to describe the concentration at which saturation begins to occur. Theory specifies that good oligotrophs have a large a degrees (A) for nutrient collection and a small V(max) for economy of enzyme, giving a small K(T). The product of the two constants is universally rather constant so that oligotrophy is scaled on a plot of a degrees (A) versus K(T), with better oligotrophs toward one end. This idea is borne out by experimental data, and therefore typical small difficult-to-culture aquatic bacteria may be classified as oligobacteria.  相似文献   

7.
Summary Plant root nutrient uptake efficiency may be expressed by the kinetic parameters, Vmax and Km, as well as by normal enzymatic reactions. These parameters are apparently useful indices of the level of adaptation of genotypes to the nutrient conditions in the soil. Moreover, sulfate uptake capacity has been considered a valuable index for selecting superior hybrid characterized by both high grain yield and efficiency in nutrient uptake. Therefore, the purpose of this research was to determine combining ability for sulfate uptake, in a diallel series of maize hybrids among five inbreds. Wide differences among the 20 single crosses were obtained for Vmax and Km. The general and specific combining ability mean squares were significant and important for each trait, indicating the presence of considerable amount of both additive and nonadditive gene effects in the control of sulfate uptake. In addition, maternal and nonmaternal components of F1 reciprocal variation showed sizeable effects on all the traits considered. A relatively high correlation was also detected between Vmax and Km. However, both traits displayed enough variation to suggest that simultaneous improvement of both Vmax and Km should be feasible. A further noteworthy finding in this study was the identification of one inbred line, which was the best overall parent for improving both affinity and velocity strategies of sulfate uptake.  相似文献   

8.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   

9.
Fusarium solani pisi recombinant cutinase solubilized in reversed micelles of a nonionic surfactant (phosphatidylcholine) in isooctane was used to catalyze the esterification of fatty acids with 2-butanol. Various parameters affecting the catalytic activity of the microencapsulated cutinase, such as pH, wo (molar ratio water/surfactant), temperature and substrate concentration were investigated. Maximal specific activity were obtained with wo=13, at pH 10.7 and 35d`C. The cutinase showed a higher specific activity for short length fatty acids, namely butyric acid. Calculation of the apparent kinetic parameters (km and Vmax) for the synthesis of butyl butyrate, showed a low apparent affinity of the cutinase in phosphatidylcholine reversed micelles for both substrates.  相似文献   

10.
Blasticidin S deaminase (EC 3.5.4.23) was purified by affinity chromatography using a column of Sepharose 4B coupled with pyrimidinoblasticidin S as a ligand. The Michaelis constant Km and the maximum velocity Fmax varied with pH, which suggests that enzyme ionization is important either for substrate binding or for catalytic activity. The inflection point at pH 8.6 ~ 8.9 in the plot of pKm versus pH was attributed to an enzyme amino group which corresponded to the carboxyl group of substrates, and an inflection at pH 5.3 in the log Vmax-pH plot was assigned to the imidazole group of histidine, which appeared to be critical for catalytic deaminohydroxylation. The binding of substrates by the enzyme was inferred to be promoted thermodynamically, and activation of the substrate-enzyme complex was presumed to proceed endothermically. From the results obtained, a hypothetical mode of reaction for blasticidin S deaminase is proposed.  相似文献   

11.
Aminoglycoside phosphotransferase(3′)‐IIIa (APH) is the enzyme with broadest substrate range among the phosphotransferases that cause resistance to aminoglycoside antibiotics. In this study, the thermodynamic characterization of interactions of APH with its ligands are done by determining dissociation constants of enzyme–substrate complexes using electron paramagnetic resonance and fluorescence spectroscopy. Metal binding studies showed that three divalent cations bind to the apo‐enzyme with low affinity. In the presence of AMPPCP, binding of the divalent cations occurs with 7‐to‐37‐fold higher affinity to three additional sites dependent on the presence and absence of different aminoglycosides. Surprisingly, when both ligands, AMPPCP and aminoglycoside, are present, the number of high affinity metal binding sites is reduced to two with a 2‐fold increase in binding affinity. The presence of divalent cations, with or without aminoglycoside present, shows only a small effect (<3‐fold) on binding affinity of the nucleotide to the enzyme. The presence of metal–nucleotide, but not nucleotide alone, increases the binding affinity of aminoglycosides to APH. Replacement of magnesium (II) with manganese (II) lowered the catalytic rates significantly while affecting the substrate selectivity of the enzyme such that the aminoglycosides with 2′‐NH2 become better substrates (higher Vmax) than those with 2′‐OH. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 801–809, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 ± 2.6 μM and a maximum velocity (Vmax) of 9.76 ± 0.78 nmol min−1 mg of protein−1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism (“metabolic drag”). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.  相似文献   

13.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K m and V max, were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K m values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V max,app>V max). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

14.
The transport of L-alanine in human diploid fibroblasts was investigated. Transport measurements were performed on subcultures between the third and eighth passages with subconfluent cells growing on glass coverslips. Kinetic analysis of approximate initial rates of transport at substrate concentrations from 0.05 to 10 mmole/liter indicate the presence of two distinguishable systems. The high affinity system has a Km of 0.24 mmole/liter and a Vmax of 6.4 nmole/100 μg protein/2 min. For the low affinity system, the contribution of the high affinity system to the uptake must absolutely be taken into account. The Km and Vmax values, obtained by using a computer program, are a Km of 15.0 mmole/liter and a Vmax of 14.7 nmole/100 μg protein/2 min. For alanine concentrations below 1 mmole/liter, the contribution of the Na+-independent uptake is less than 10%, and the kinetic constants of the high affinity system are in the same range if this contribution is taken into account. On the contrary the influence of a diffusion-like process is more significant on the low affinity system whose Km is about 49 mmole/liter after subtraction of the Na+-independent uptake from the experimental velocities. Inhibition studies were performed with NCH3-alanine. They permitted us first to confirm the existence of system A in cultured human fibroblasts in agreement with two recent works and second to show how this system contributes to L-alanine uptake. This contribution seems very small in low concentrations but it rises as the concentrations increase.  相似文献   

15.
Substrate specificity of chlorophyllase   总被引:2,自引:0,他引:2       下载免费PDF全文
Apparent Km and Vmax values were obtained for hydrolysis of methyl and ethyl chlorophyllides a, methyl and ethyl pheophorbide a, and 9-hydroxymethyl pheophorbide a by chlorophyllase from Ailanthus altissima. Analysis of substrate specificity data for chlorophyllase indicates that the presence of a 9-keto group and a methyl alcohol group esterified at the 7-position in chlorophyll derivatives results in maximum binding affinity for substrates. Data on maximum reaction rates indicate that the rate-controlling step of hydrolysis occurs after release of the alcohol from the ester. Probable high affinity chlorophyllase inhibitors can be predicted on the basis of these specificity studies.  相似文献   

16.
2-Oxoglutarate (-ketoglutarate) is transported into synaptosomal and synaptoneurosomal preparations by a Na+-dependent, high-affinity process that exhibits complex kinetics, and is differentially modulated by glutamate, glutamine, aspartate, malate, and a soluble, heat-labile substance of high molecular weight present in rat brain extracts. Glutamate and aspartate generally inhibit 2-oxoglutarate uptake, but under certain conditions may increase uptake. Glutamine generally increases 2-oxoglutarate uptake, but under certain conditions may inhibit uptake. One interpretation of our results is that 2-oxoglutarate uptake is mediated primarily by a transporter that exhibits negative cooperativity and possesses three regulatory sites that differentially modulate substrate affinity, Vmax, and negative cooperativity. Glutamate, aspartate, malate, and 2-oxoglutarate itself may interact with a site that reduces substrate affinity; whereas glutamine, and possibly glutamate and aspartate, appear to interact with another site that increases Vmax. A putative regulatory protein appears to abolish negative cooperativity and increases substrate affinity in the absence of glutamine. Based on the evidence that glutamatergic and GABAergic neurons depend on astrocytes to supply precursors to replenish their neurotransmitter and tricarboxylic acid cycle pools, the uptake of 2-oxoglutarate, presumably into synaptic terminals, may reflect a role for this metabolite in replenishing the transmitter and tricarboxylic acid pools, and a role for the transporter as a site at which these pools are regulated.Abbreviations used AAT aspartate aminotransferase - glu glutamate - gln glutamine - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LDS low-density synaptosomes - OAA oxaloacetate - 2-OG 2-oxoglutarate (-ketoglutarate) - PC pyruvate carboxylase - PDH pyruvate dehydrogenase - TCA tricarboxylic acid Special issue dedicated to Dr. Claude Baxter.  相似文献   

17.
This study represents the most comprehensive assessment of kinetic parameters for Karenia brevis to date as it encompasses natural populations sampled during three different bloom years in addition to cultured strains under controlled conditions. Nitrogen (N) uptake kinetics for ammonium (NH4+), nitrate (NO3), urea, an amino acid mixture, individual amino acids (glutamate and alanine), and humic substrates were examined for the toxic red tide dinoflagellate, K. brevis, during short term incubations (0.5–1 h) using 15N tracer techniques. Experiments were conducted using natural populations collected during extensive blooms along the West Florida Shelf in October 2001, 2002, and 2007, and in cultured strains (CCFWC 251 and CCFWC 267) obtained from the Florida Fish and Wildlife Institute culture collection. Kinetic parameters for the maximum uptake velocity (Vmax), half-saturation concentration (Ks), and the affinity constant (α) were determined. The affinity constant is considered a more accurate indicator of substrate affinity at low concentrations. K. brevis took up all organic substrates tested, including N derived from humic substances. Uptake rates of the amino acid mixture and some NO3 incubations did not saturate even at the highest substrate additions (50–200 μmol N L−1). Based upon the calculated α values, the greatest substrate preference was for NH4+ followed by NO3  urea, humic compounds and amino acids. The ability of K. brevis to utilize a variety of inorganic and organic substrates likely helps it flourish under a wide range of nutrient conditions from bloom initiation in oligotrophic waters offshore to bloom maintenance near shore where ambient nutrient concentrations may be orders of magnitude greater.  相似文献   

18.
This report presents results on relationships between the kinetics (Vmax and Km) of -glucosidase (GLCase) and aminopeptidase (AMPase) activity, and dissolved organic carbon (DOC) and bacterial secondary production in freshwater mesocosms of differing degrees of eutrophication. These relationships varied in different mesocosms and depended on the trophic status of water and the exudation rates of organic carbon (EOC) by phytoplankton. Close coupling of bacterial production to Vmax of GLCase activity was observed only in nutrient-enriched mesocosms. The relationship between GLCase and DOC content was also significant in enriched water. There was no correlation between the Vmax, of GLCase and DOC and bacterial production in nutrient-impoverished and control (mesotrophic) enclosures. However, the Vmax of AMPase correlated well to DOC and bacterial production in these mesocosms. AMPase activity did not correlate with DOC and bacterial production in nutrient-impoverished mesocosms. There was no relationship between bacterial biomass and enzyme activity in all studied mesocosms. Comparison of the rates of phytoplankton production of EOC and rates of the bacterial organic carbon demand (BOCD) in nutrient-impoverished mesocosms showed that EOC flux constituted, on average, 90% of BOCD. However, in nutrient-enriched mesocosms EOC contributed only, on average, 27% to the BOCD; thus, in these mesocosms, bacteria were probably organic-carbon limited. It is hypothesized that to bypass substrate limitation, bacteria produced GLCase and AMPase. These enzymes had a high specific activity and high affinity to their substrates and efficiently hydrolyzed polysaccharides and proteins, thereby supplying microorganisms with readily utilizable products of enzyme catalysis. Offprint requests to: R.J. Chróst.  相似文献   

19.
In Silene alba plants the dominant allele of gene Fg controls an enzyme which catalyses the formation of isovitexin 2″-O-glucoside both in petals and green parts. Both isovitexin and isoorientin can act as substrate. Kmvalues for the isovitexin glucosylation are 0.09 mM for isovitexin and 0.3 mM for UDP-glucose, Vmax 0.17 nmol min?1 mg protein?1. For the isoorientin glucosylation Km values of 0.45 mM for isoorientin, of 0.75 mM for UDP-glucose and Vmax of 0.27 nmol min?1 mg protein?1 are found. The pH optima for both substrates differ markedly. For the substrate with one hydroxyl in the B-ring, isovitexin, the pH optimum is pH 8.5. For isoorientin, which has two hydroxyls in the B-ring, a pH optimum of 7.5 is found. These results suggest that the B-ring hydroxylation pattern influences the pH at which the substrate has optimal affinity for the enzyme. The location of the carbon-carbon bound glucose on a the flavonoid skeleton is of importance for enzyme activity as well. Vitexin, which has glucose at the 8-position, was not a substrate. The glucosylation of vitexin could, however, be demonstrated in enzyme extracts of petals of plants, grown from seed collected in Armenia; in these petals apart from isovitexin glycosides, vitexin glycosides are found as well.  相似文献   

20.
The effect of NaCl stress on molecular and biochemical properties of oxalate oxidase (OXO) was studied in leaves of grain sorghum hybrid (var CSH-14) seedlings. There was no effect on molecular weight and number of subunits of the enzyme but it showed some important changes in its kinetic parameters such as Km for oxalate and Vmax. Optimum pH (5.8), activation energy (5.084 kcal mole?1), time of incubation (6 min) and Km for oxalate (1.21×10t-4M) were increased, while Vmax (0.182 mmole min?1) decreased and no change in optimum temperature was observed. This showed that substrate affinity and maximum activity of the enzyme was adversely affected. The specific activity of oxalate oxidase was increased in seedlings grown in a NaCl containing medium compared to normal, which reveals the increased de novo synthesis of the enzyme to sustain oxalate degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号