首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cover Caption     
《Insect Science》2016,23(2):i-i
Dendroctonus valens, an introduced exotic pest from North America to China, has killed millions of healthy Chinese pines. Xu et al. (2016) showed two yeasts and three bacteria associated with the invasive pest degraded 20%‐50% of 〈‐pinene, the most abundant defensive monoterpene of Chinese pines. The microorganisms capable of 〈‐pinene degradation in vitro and their tolerance to high levels of 〈‐pinene suggested that D. valens‐associated microorganisms may help both microorganisms and the bark beetle overcome host 〈‐pinene defense (see pages 183‐190). Photo by Run‐Zhi Zhang.  相似文献   

2.
Herbivorous insects exploit multiple plant cues to detect and orient toward suitable hosts and, accordingly, hosts have evolved complex constitutive and inducible defenses in response. In China, the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), an invasive bark beetle from North America, attacks mainly Pinus tabuliformis Carrière (Pinaceae), which contains many monoterpenes. In this study, we explored how the monoterpene α‐pinene affects the feeding performance and pheromone production of D. valens. First, the composition and quantities of monoterpenes of both P. tabuliformis healthy trees and fresh stumps were determined and the infestation of D. valens in healthy trees and fresh stumps was investigated, linking the amount of monoterpenes and D. valens infestation. Gas chromatography–mass spectrometry (GC‐MS) analysis showed that P. tabuliformis mainly contained α‐pinene, with concentrations of 0.1 and 0.5 mg g?1 in healthy pine phloem and stump phloem, respectively. Second, the monoterpene's influence on feeding performance was tested using phloem media with α‐pinene concentrations ranging from 0 to 30 mg g?1. The results showed that the percentages of beetles boring and the gallery lengths of both adult females and larvae were negatively correlated with the α‐pinene concentration although body weight changes did not correlate with α‐pinene concentration. Finally, pheromone analysis showed that the production of all pheromones increased with increasing α‐pinene concentrations. This study showed the dual effects of α‐pinene on D. valens: α‐pinene inhibited the bark beetle's feeding activities and in turn the bark beetle made use of it to produce pheromones. Our study indicated the importance of promptly removing fresh stumps in the field for the management of the bark beetle.  相似文献   

3.
Abstract 1 Host plant terpenes can influence attraction of conifer bark beetles to their aggregation pheromones: both synergistic and inhibitory compounds have been reported. However, we know little about how varying concentrations of individual monoterpenes affect responses. 2 We tested a gradient of ratios of α‐pinene, the predominant monoterpene in host pines in the Great Lakes region of North America, to Ips pini's pheromone, racemic ipsdienol plus lanierone. 3 Ips pini demonstrated a parabolic response, in which low concentrations of α‐pinene had no effect on attraction to its pheromone, intermediate concentrations were synergistic and high concentrations were inhibitory. These results suggest optimal release rates for population monitoring and suppression programmes. 4 Inhibition of bark beetle attraction to pheromones may be an important component of conifer defences. At terpene to pheromone ratios emulating emissions from trees actively responding to a first attack, arrival of flying beetles was low. This may constitute an additional defensive role of terpenes, which are also toxic to bark beetles at high concentrations. 5 Reduced attraction to a low ratio of α‐pinene to pheromone, as occurs when colonization densities become high and the tree's resin is largely depleted, might reflect a mechanism for preventing excessive crowding. 6 Thanasimus dubius, the predominant predator of I. pini, was also attracted to ipsdienol plus lanierone, but its response differed from that of its prey. Attraction increased across all concentrations of α‐pinene. This indicates that separate lures are needed to sample both predators and bark beetles effectively. It also provides an opportunity for maximizing pest removal while reducing adverse effects on beneficial species. This disparity further illustrates the complexity confronting natural enemies that track chemical signals to locate herbivores.  相似文献   

4.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

5.
Abstract 1 One proposed approach to improving biological control of bark beetles (Coleoptera: Scolytidae; alt. Curculionidae: Scolytinae) is to manipulate predator movement using semiochemicals. However, selective manipulation is impeded by attraction of both predators and pests to bark beetle pheromones. 2 The primary bark beetle affecting pine plantations in Wisconsin, U.S.A., is the pine engraver, Ips pini (Say). Other herbivores include Ips grandicollis (Eichhoff) and Dryophthorus americanus Bedel (Curculionidae). The predominant predators are the beetles Thanasimus dubius (Cleridae) and Platysoma cylindrica (Histeridae). 3 We conducted field assays using two enantiomeric ratios of ipsdienol, and frontalin plus α‐pinene. Ipsdienol is the principal pheromone component of I. pini, and frontalin is produced by a number of Dendroctonus species. α‐Pinene is a host monoterpene commonly incorporated into commercial frontalin lures. 4 Thanasimus dubius was attracted to frontalin plus α‐pinene, and also to racemic ipsdienol. By contrast, I. pini was attracted to racemic ipsdienol, but showed no attraction to frontalin plus α‐pinene. Platysoma cylindrica was attracted to 97%‐(–)‐ipsdienol and, to a lesser extent, racemic ipsdienol, but not to frontalin plus α‐pinene. Ips grandicollis was attracted to frontalin plus α‐pinene but not to ipsdienol. Dryophthorus americanus was attracted to both ipsdienol and frontalin plus α‐pinene. 5 This ability to selectively attract the predator T. dubius without attracting the principal bark beetle in the system, I. pini, provides new opportunities for research into augmentative biological control and basic population dynamics. Moreover, the attraction of T. dubius, but not P. cylindrica, to frontalin plus α‐pinene creates opportunities for selective manipulation of just one predator. 6 Patterns of attraction by predators and bark beetles to these compounds appear to reflect various degrees of geographical and host tree overlap with several pheromone‐producing species.  相似文献   

6.
Ontogenetic changes in leaf chemistry can affect plant–herbivore interactions profoundly. Various theoretical models predict different ontogenetic trajectories of defence chemicals. Empirical tests do not consistently support one model. In Eucalyptus nitens, a fast‐growing tree, we assessed early developmental changes to seedlings, in foliage concentrations of nitrogen and the full suite of known secondary (defence) chemicals. This included the terpene, α‐pinene, whose impact on marsupial herbivory is unknown. To test for the influence of abiotic conditions on the ontogenetic trajectories we overlaid a nutrient treatment. Ontogenetic trajectories varied among compounds. Sideroxylonals and cineole were barely detected in very young seedlings, but increased substantially over the first 200 days. Total phenolic concentration increased fourfold over this time. In contrast, α‐pinene concentration peaked within the first 60 days and again between 150 and 200 days. Nutrients altered the degree but not the direction of change of most chemicals. A shorter trial run at a different season showed qualitatively similar patterns, although α‐pinene concentration started very high. We investigated the effect of detected levels of α‐pinene and cineole on food intake by two mammalian herbivores, common brushtail possums (Trichosurus vulpecula) and red‐bellied pademelons (Thylogale billardierii). Under no‐choice conditions neither terpene reduced intake; but with a choice, possums preferred α‐pinene to cineole. The ontogenetic trajectories of most compounds were therefore consistent with models that predict an increase as plants develop. Published data from later developmental stages in E. nitens also confirm this pattern. α‐Pinene, however, was the only secondary compound found at significant levels in very young seedlings; but it did not constrain feeding by marsupial herbivores. Models must allow for different roles of defensive secondary chemicals, presumably associated with different selective pressures as plants age, which result in different ontogenetic trajectories.  相似文献   

7.
Exotic forest insects and their symbionts pose an increasing threat to forest health. This is apparently true for the red turpentine beetle (Dendroctonus valens), which was unintentionally introduced to China, where the beetle has killed millions of healthy native pine trees. Previous population genetics studies that used cytochrome oxidase I as a marker concluded that the source of D. valens in China was western North America. In contrast, surveys of fungi associated with D. valens demonstrated that more fungal species are shared between China and eastern North America than between China and western North America, suggesting that the source population of D. valens could be eastern North America. In this study, we used microsatellite markers to determine population structure of D. valens in North America as well as the source population of the beetle in China. The analyses revealed that four genetically distinct populations (herein named the West, Central, Northeast and Mexico) represent the native range of D. valens. Clustering analyses and a simulation‐based approximate Bayesian computation (ABC) approach supported the hypothesis that western North America is the source of the invasive D. valens population. This study provides a demonstration of non‐congruence between patterns inferred by studies on population genetics and symbiont assemblages in an invasive bark beetle.  相似文献   

8.
The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), colonizes all pines species within its native range throughout North and Central America. Recently, this species was accidentally introduced to China, where it has caused severe damage in pine forests. It belongs to a group of beetles that spend most of their lives between the tree bark and sapwood, where it feeds on phloem: a poor substrate with very low nutritional value of nitrogen and toxic properties due to its high content of secondary defensive compounds. The aim of this study was to characterize the bacterial community of the D. valens gut by culture-dependent and -independent methods. Polymerase chain reaction denaturing gradient gel electrophoresis and ribosomal gene library analyses revealed that species diversity in the D. valens gut was relatively low, containing between six and 17 bacterial species. The bacterial community associated with larvae and adults was dominated by members of the following genera: Lactococcus, Acinetobacter, Pantoea, Rahnella, Stenothrophomonas, Erwinia, Enterobacter, Serratia, Janibacter, Leifsonia, Cellulomonas, and Cellulosimicrobium. The members of the last four genera showed cellulolytic activity in vitro and could be involved in cellulose breakdown in the insect gut. Finally, nitrogen fixation was demonstrated in live larvae and adults; however, capacity of nitrogen fixing in vitro was not found among enterobacterial species isolated in nitrogen-free media; neither were nifD nor nifH genes detected. In contrast, nifD gen was detected in metagenomic DNA from insect guts. The identification of bacterial species and their potential physiological capacities will allow exploring the role of gut symbiotic bacteria in the adaptation and survival of D. valens in a harsh chemical habitat poor in nitrogen sources.  相似文献   

9.
10.
Leptocybe invasa is an insect pest causing gall formation on oviposited shoot tips and leaves of Eucalyptus trees leading to leaf deformation, stunting, and death in severe cases. We previously observed different constitutive and induced terpenes, plant specialized metabolites that may act as attractants or repellents to insects, in a resistant and susceptible clone of Eucalyptus challenged with Linvasa. We tested the hypothesis that specific terpenes are associated with pest resistance in a Eucalyptus grandis half‐sib population. Insect damage was scored over 2 infestation cycles, and leaves were harvested for near‐infrared reflectance (NIR) and terpene measurements. We used Bayesian model averaging for terpene selection and obtained partial least squares NIR models to predict terpene content and Linvasa infestation damage. In our optimal model, 29% of the phenotypic variation could be explained by 7 terpenes, and the monoterpene combination, limonene, α‐terpineol, and 1,8‐cineole, could be predicted with an NIR prediction ability of  .67. Bayesian model averaging supported α‐pinene, γ‐terpinene, and iso‐pinocarveol as important for predicting Linvasa infestation. Susceptibility was associated with increased γ‐terpinene and α‐pinene, which may act as a pest attractant, whereas reduced susceptibility was associated with iso‐pinocarveol, which may act to recruit parasitoids or have direct toxic effects.  相似文献   

11.
Abstract 1 The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2 Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to insect‐produced pheromones have been widely debated. 3 Currently, commercial lures for T. piniperda include only the host volatiles α‐pinene in North America and α‐pinene, terpinolene and (+)‐3‐carene in Europe. Several potential pheromone candidates have been identified for T. piniperda. 4 We tested various combinations of host volatiles and pheromone candidates in Michigan, U.S.A., and Ontario, Canada, to determine an optimal blend. 5 Attraction of T. piniperda was significantly increased when trans‐verbenol (95% pure, 3.2%cis‐verbenol content) was added with or without myrtenol to α‐pinene or to blends of α‐pinene and other kairomones and pheromone candidates. 6 Our results, together with other research demonstrating that trans‐verbenol is produced by T. piniperda, support the designation of trans‐verbenol as a pheromone for T. piniperda. A simple operational lure consisting of α‐pinene and trans‐verbenol is recommended for optimal attraction of T. piniperda.  相似文献   

12.
13.
14.
15.
We evaluated responses of the predominant predators of pheromone-producing bark beetles (Coleoptera: Scolytidae) to chemical cues associated with other phloeophagous species that colonize the same trees. This study considered the range of chemical signals exploited by a category of predators that may be viewed either as specialists, because they feed almost exclusively within trees killed by bark beetles, or as generalists, because they feed on a diverse fauna of primary and secondary insects within this habitat. It also evaluated one aspect of a broader model of predator-prey coevolution, that proposes altered semiochemistry as a source of partial escape from predators that exploit kairomones. The predators, Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae), were attracted to cues associated with feeding on bark-phloem disks by two scolytids that produce adult pheromones, Ips pini (Say) and Ips grandicollis (Eichhoff). These predators were not attracted to beetles that feed on lower stems or roots and are not known to produce adult pheromones,Dendroctonus valens LeConte, Hylastes porculus Erickson (Coleoptera: Scolytidae), and Hylobius pales (Herbst) (Coleoptera: Curculionidae). The predator Tenebroides collaris (Sturm) (Coleoptera: Trogositidae) was attracted to I. pini and I. grandicollis, and also to D. valens, H. porculus, and H. pales. Ips pini was attracted to conspecifics only, but I. grandicollis was attracted both to its conspecifics and to volatiles associated with feeding lower stem and root insects. Lower stem and root insects were not or only weakly attracted to cues associated with their conspecifics. These results are consistent with a dynamic coevolved interaction between T. dubius and P. cylindrica and Ips spp.  相似文献   

16.

Main conclusion

Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.
  相似文献   

17.
Conifers are long-lived organisms, and part of their success is due to their potent defense mechanisms. This review focuses on bark defenses, a front line against organisms trying to reach the nutrient-rich phloem. A major breach of the bark can lead to tree death, as evidenced by the millions of trees killed every year by specialized bark-invading insects. Different defense strategies have arisen in conifer lineages, but the general strategy is one of overlapping constitutive mechanical and chemical defenses overlaid with the capacity to up-regulate additional defenses. The defense strategy incorporates a graded response from 'repel', through 'defend' and 'kill', to 'compartmentalize', depending upon the advance of the invading organism. Using a combination of toxic and polymer chemistry, anatomical structures and their placement, and inducible defenses, conifers have evolved bark defense mechanisms that work against a variety of pests. However, these can be overcome by strategies including aggregation pheromones of bark beetles and introduction of virulent phytopathogens. The defense structures and chemicals in conifer bark are reviewed and questions about their coevolution with bark beetles are discussed.  相似文献   

18.
Lu M  Miller DR  Sun JH 《PloS one》2007,2(12):e1302

Background

Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.

Methodology/Principal Findings

Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35–40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.

Conclusions/Significance

We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species.  相似文献   

19.
To develop an optimal attractant for Monochamus saltuarius (Gebler) (Coleoptera: Cerambycidae), the synergistic effects of a few potential attractants (ethanol and α‐pinene as host‐plant volatiles, and ipsenol and ipsdienol as bark beetle pheromones) were tested in a pine forest combined with 2‐(1‐undecyloxy)‐1‐ethanol (monochamol), the aggregation pheromone of Monochamus species, for two consecutive years, 2014 and 2015. Total number of catches was 65 and 33 in 2014 and 2015, respectively. Ethanol or ethanol + monochamol (a base blend) were not attractive to M. saltuarius with no difference from the control. Addition of α‐pinene and ipsdienol to the base blend did not significantly increase catches. However, ipsenol was significantly synergistic to the base blend in attracting M. saltuarius in 2014, and the blend (ipsenol + base blend) attracted meaningfully higher numbers of M. saltuarius in 2015. Our study illustrates the potential for monochamol and ipsenol baits for monitoring and trapping of M. saltuarius in the field.  相似文献   

20.
Antipredator defense of herbivorous insects often relies on the potential toxicity of defensive chemicals sequestered from their host plants. The colorful Lygaeinae (Heteroptera: Lygaeidae) store a concentrated mixture of toxic cardenolides (cardiac glycosides) in specialized storage compartments of the bugs' integument, from which they are released upon attack. Larvae and adults of the large milkweed bug Oncopeltus fasciatus (Heteroptera: Lygaeinae) are specialized to feed on cardenolide‐containing milkweeds in the plant genus Asclepias and display a conspicuous red and black colorations. To investigate whether O. fasciatus gained improved protection by feeding on a toxic host plant (Asclepias syriaca), compared to a nontoxic alternative (sunflower seeds), we fed nymphs and adults of O. fasciatus to the golden orb‐weaver Nephila senegalensis. While visually oriented vertebrates, such as avian predators, have been intensively investigated for their reaction to defensive compounds and aposematic coloration, less attention has been paid to invertebrate predators. Their different perceptual abilities can provide important opportunities for testing hypotheses on warning coloration and chemical defenses. The predation trials showed that the bugs fed on Asclepias were significantly less likely to be killed than the bugs reared on a cardenolide‐free diet. This suggests that sequestered cardenolides in O. fasciatus nymphs and adults represent a significant fitness advantage on an individual level against this invertebrate predator. Yet, when testing for avoidance learning in the spiders, negative experience did not change the way how similar prey was attacked at the next encounter. In this case, visual or chemical aposematism thus does not seem to matter for predator learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号